Skip to main content
Log in

Global and Local Translation Designs of Quantum Image Based on FRQI

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, two kinds of quantum image translation are designed based on FRQI, including global translation and local translation. Firstly, global translation is realized by employing adder modulo N, where all pixels in the image will be moved, and the circuit of right translation is designed. Meanwhile, left translation can also be implemented by using right translation. Complexity analysis shows that the circuits of global translation in this paper have lower complexity and cost less qubits. Secondly, local translation, consisted of single-column translation, multiple-columns translation and translation in the restricted area, is designed by adopting Gray code. In local translation, any parts of pixels in the image can be translated while other pixels remain unchanged. In order to lower complexity when the number of columns needing to be translated are more than one, multiple-columns translation is proposed, which has the approximate complexity with single-column translation. To perform multiple-columns translation, three conditions must be satisfied. In addition, all translations in this paper are cyclic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers[J]. Int. J. Theor. Phys. 21 (6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society A Mathematical Physical &, Engineering Sciences 400(1818), 97–117 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search[C]. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp 212–219. ACM (1996)

  5. Aspuru-Guzik, A., Head-Gordon, M.: Simulated quantum computation of molecular energies[J]. Science 309(5741), 1704–7 (2005)

    Article  ADS  Google Scholar 

  6. Venegas-Andraca, S.E.: Quantum walks: A comprehensive review[J]. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vlasov, A.Y.: Quantum computations and images recognition[J]. Physics (1997)

  8. Schützhold, R.: Pattern recognition on a quantum computer[J]. Phys. Rev. A 67(6), 062311 (2002)

    Article  MathSciNet  Google Scholar 

  9. Beach, G, Lomont, C, Processing, C.C.: Quantum Image (QuIP)[c]. In: Proceedings of the Applied Imagery Pattern Recognition Workshop, 2003, pp 369–376. IEEE (2003)

  10. Lugiato, L.A., Gatti, A., Brambilla, E., et al: Quantum imaging[J]. J. Opt. B: Quantum Semiclassical Opt. 4(3), S176-S183(8) (2002)

    Article  ADS  Google Scholar 

  11. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing[J]. IEEE Signal Process. Mag. 19(6), 12–32 (2002)

    Article  ADS  Google Scholar 

  12. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics[C] AeroSense, 2003. International Society for Optics and Photonics, 137–147 (2003)

  13. Venegas-Andraca, S.E., Ball, J.L.: Storing images in entangled quantum systems[J] arXiv preprint quant-ph/0402085 (2004)

  14. Latorre, J.I.: Image compression and entanglement[J] arXiv:quant-ph/0510031 (2005)

  15. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J]. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: A novel enhanced quantum representation of digital images[J]. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Li, H.S., Qingxin, Z., Lan, S., et al.: Image storage, retrieval, compression and segmentation in a quantum system[J]. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Li, H.S., Zhu, Q., Li, M.C., et al.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases[J]. Inform. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  19. Sun, B., Le, P.Q., Iliyasu, A.M., et al.: A multi-channel representation for images on quantum computers using the RGB α color space[C]. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), 2011, pp 1–6. IEEE (2011)

  20. Wang, M., Zhang, Y.: FLPI: representation of quantum images for log-polar coordinate[J]. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 8878, pp 88780H-88780H-5 (2013)

  21. Yan, F, Iliyasu, A, Jiang, Z.: Quantum Computation-Based image representation, processing operations and their Applications[J]. Entropy 16(10), 5290–5338 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Le, PQ, Iliyasu, AM, Dong, F, et al.: Strategies for designing geometric transformations on quantum images[J]. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, P., Zhou, R.G., Jing, N., et al: Geometric transformations of multidimensional color images based on NASS[J]. Inf. Sci., s 340–341:191-208 (2016)

  24. Le, P.Q., Iliyasu, A.M., Dong, F., et al: Fast geometric transformations on quantum images[J]. IAENG Int. J. Appl. Math. 40(3) (2010)

  25. Le, PQ, Iliyasu, AM, Dong, F, et al.: Efficient color transformations on quantum images[J]. Journal of Advanced Computational Intelligence &, Intelligent Informatics 15 (6), 698–706 (2011)

    Article  Google Scholar 

  26. Jiang, N, Wang, L.: Quantum image scaling using nearest neighbor interpolation[J]. Quantum Inf. Process. 14(5), 1559–1571 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Jiang, N, Wang, J, Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio[J]. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sang, J, Wang, S, Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR[j] (2015)

  29. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling[J]. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling[J]. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer[J]. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zhang, Y, Lu, K, Xu, K, et al.: Local feature point extraction for quantum images[J]. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Yan, F, Iliyasu, AM, Sun, B, et al.: A duple watermarking strategy for multi-channel quantum images[J]. Quantum Inf. Process. 14(5), 1–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform[J]. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on moiré pattern[J]. Int. J. Theor. Phys. 54(3), 1021–1032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits[J]. Quantum Inf. Process. 15(5), 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark Protocol[J]. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum fourier transform[J]. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Yang, Y., Xu, P., Tian, J., et al.: Analysis and improvement of the dynamic watermarking scheme for quantum images using quantum wavelet transform[J]. Quantum Inf. Process. 13(9), 1931–1936 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Yang, Y., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform[J]. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers[M], Texas A & M University (2001)

  42. Song, X., Wang, S., El-Latif, A.A.A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform[J]. Multimedia Systems 20(4), 1–10 (2014)

    Article  Google Scholar 

  43. Hu, Y., Jeon, B.: Reversible visible watermarking and lossless recovery of original Images[J]. IEEE Trans. Circuits Syst. Video Technol. 16(11), 1423–1429 (2006)

    Article  Google Scholar 

  44. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations[J]. Inform. Sci. 186 (11), 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sorkin, R.D.: Quantum convolution and quantum correlation algorithms are physically impossible[J]. Physics (2003)

  46. Iliyasu, A.M.: A framework for representing and producing movies on quantum computers[J]. International Journal of Quantum Information 6(9), 1459–1497 (2011)

    Article  MATH  Google Scholar 

  47. Iliyasu, A.M.: Towards the realisation of secure and efficient image and video processing applications on quantum computers[J]. Entropy

  48. Wang, J., Jiang, N., Wang, L.: Quantum image translation[J]. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Vedral, V.V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations.[J]. Phys. Rev. A 54(1), 147–153 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  50. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61463016 and 61462026, Program for New Century Excellent Talents in University under Grant No.NCET-13-0795, Training program of Academic and technical leaders of Jiangxi Province under Grant No.20153BCB22002, Natural Science Foundation of Jiangxi Province of China under Grant No.20151BAB207019 and the advantages of scientific and technological innovation team of Nanchang City under Grant No.2015CXTD003, FDCT of Macau under grant 013/2013/A1, University of Macau under grants MRG022/IH/2013/FST and MYRG2014-00052-FST, and National Natural Science Foundation of China under grant No. 11404415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canyun Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, RG., Tan, C. & Ian, H. Global and Local Translation Designs of Quantum Image Based on FRQI. Int J Theor Phys 56, 1382–1398 (2017). https://doi.org/10.1007/s10773-017-3279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3279-9

Keywords

Navigation