Skip to main content
Log in

Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multi-dimensional color image processing has two difficulties: One is that a large number of bits are needed to store multi-dimensional color images, such as, a three-dimensional color image of \(1024 \times 1024 \times 1024\) needs \(1024 \times 1024 \times 1024 \times 24\) bits. The other one is that the efficiency or accuracy of image segmentation is not high enough for some images to be used in content-based image search. In order to solve the above problems, this paper proposes a new representation for multi-dimensional color image, called a \((n\,+\,1)\)-qubit normal arbitrary quantum superposition state (NAQSS), where \(n\) qubits represent colors and coordinates of \({2^n}\) pixels (e.g., represent a three-dimensional color image of \(1024 \times 1024 \times 1024\) only using 30 qubits), and the remaining 1 qubit represents an image segmentation information to improve the accuracy of image segmentation. And then we design a general quantum circuit to create the NAQSS state in order to store a multi-dimensional color image in a quantum system and propose a quantum circuit simplification algorithm to reduce the number of the quantum gates of the general quantum circuit. Finally, different strategies to retrieve a whole image or the target sub-image of an image from a quantum system are studied, including Monte Carlo sampling and improved Grover’s algorithm which can search out a coordinate of a target sub-image only running in \(O(\sqrt{N/r} )\) where \(N\) and \(r\) are the numbers of pixels of an image and a target sub-image, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134. (1994)

  3. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. (1996)

  5. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    ADS  Google Scholar 

  6. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  7. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, H.-S., Zhu, Q., Lan, S., Shen, C.-Y., Zhou, R., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Li, H.-S., Zhu, Q., Lan, S., Wu, Q.: The quantum search algorithms for all solutions. Int. J. Theor. Phys. 52(6), 1893–1907 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Terraneo, M., Georgeot, B., Shepelyansky, D.L.: Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment. Phys. Rev. E 7164, 066215 (2005)

    Article  ADS  Google Scholar 

  11. Deutsch, D.: Quantum computational networks. Proc. R. Soc. Lond. A. 425, 73–90 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  13. Barenco, A., Bennett, C.H., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  14. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A. 51, 1015–1022 (1995)

    Article  ADS  Google Scholar 

  15. Long, G.-L., Sun, Y.: Efficient Scheme for Initializing a quantum register with an arbitrary superposed state. Phys. Rev. A. 64:014303 (2001) [Foundations of Computer Science 124–134 (1994)]

    Google Scholar 

  16. Ahn, J., Weinacht, T.C., Bucksbaum, P.H.: Information storage and retrieval through quantum phase. Science. 287, 463–465 (2000)

    Article  ADS  Google Scholar 

  17. Biron, D., Biham, O., Biham, E., Grassl, M., et al.: Generalized grover search algorithm for arbitrary initial amplitude distribution. In: Quantum Computing and Quantum Communications Lecture Notes in Computer Science. vol. 1509, pp. 140–147. (1999)

  18. Biham, E., Biham, O., Biron, D., Grassl, M., et al.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A. 63, 012310 (2000)

    Article  ADS  Google Scholar 

  19. Li, P.C., Li, S.Y.: Phase matching in Grover’s algorithm. Phys. Lett. A 366(1–2), 42–46 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Long, G.L., Li, Y.S., Zhang, W.L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Datta, R., Joshi, D., LI, J. and WANG, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), Article 5 (2008).

    Google Scholar 

  22. Canny, J.: A computational approach to edge detection. Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)

    Google Scholar 

  23. Hojjatoleslami, S.A., Kittler, J.: Region growing: a new approach. IEEE Trans. Image Process. 7(7), 1079–1084 (1998)

    Article  ADS  Google Scholar 

  24. Xu, R., Wunseh, D.: Survey of clustering algorithm. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  25. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the 2013 outstanding doctoral academic support plan of University of Electronic Science and Technology of China under Grant No. YBXSZC20131037, Program for New Century Excellent Talents in University (NCET), the Key Project of Chinese Ministry of Education under Grant No. 212094, Humanities and Social Sciences planning project of Ministry of Education under Grant No. 12YJAZH050, Project of Science and Technology of Jiangxi province Grant No. 2012BBE50086, Project of the science and technique funds of Nanchang city Grant No. 2012-KJZC-GY-CXYHZKF-001 and the item of science and technology awarded by Education Bureau of Jiangxi province under Grant Nos. GJJ13361, GJJ13338 and GJJ12311, the National Natural Science Foundation of China under No.71361009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HS., Zhu, Q., Zhou, RG. et al. Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf Process 13, 991–1011 (2014). https://doi.org/10.1007/s11128-013-0705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0705-7

Keywords

Navigation