Skip to main content
Log in

Quantum image matching

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum image processing (QIP) means the quantum-based methods to speed up image processing algorithms. Many quantum image processing schemes claim that their efficiency is theoretically higher than their corresponding classical schemes. However, most of them do not consider the problem of measurement. As we all know, measurement will lead to collapse. That is to say, executing the algorithm once, users can only measure the final state one time. Therefore, if users want to regain the results (the processed images), they must execute the algorithms many times and then measure the final state many times to get all the pixels’ values. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image matching algorithm. Unlike most of the QIP algorithms, our scheme interests only one pixel (the target pixel) instead of the whole image. It modifies the probability of pixels based on Grover’s algorithm to make the target pixel to be measured with higher probability, and the measurement step is executed only once. An example is given to explain the algorithm more vividly. Complexity analysis indicates that the quantum scheme’s complexity is \(O(2^{n})\) in contradistinction to the classical scheme’s complexity \(O(2^{2n+2m})\), where m and n are integers related to the size of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Denchev, V.S., Boixo, S., Isakov, S.V., et al.: What is the computational value of finite range tunneling? arXiv:1512.02206v4 (2016)

  3. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Jiang, N., Wu, W.Y., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  12. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  13. Li, H.S., Zhu, Q.X., Lan, S., Shen, C.Y., Zhou, R.G., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authenticationof quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theory Phys. 52, 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 2014(20), 379–388 (2014)

    Article  Google Scholar 

  22. Jiang, N., Wang, L.: A quantum image information hiding algorithm based on Moir\(\acute{e}\) pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  Google Scholar 

  23. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II(298), 243–250 (2014)

    Google Scholar 

  25. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  MATH  Google Scholar 

  26. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recogn. 321, 480–487 (2012)

    Google Scholar 

  27. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  28. Zitová, Barbara, Flusser, Jan: Image registration methods: a survey. Image Vision Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  29. https://en.wikipedia.org/wiki/Image_registration

  30. http://web.eecs.umich.edu/~silvio/teaching/EECS598_2010/slides/09_30_Alok_Sairam

  31. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

  32. Genovese, M.: Real applications of quantum imaging. arXiv:1601.06066v1, pp. 1–18 (2016)

  33. Sun, J.G., He, Y.G.: A quantum search algorithm. J. Softw. 14(3), 334–344 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Yang, Y.G., Zhao, Q.Q., Sun, S.J.: Novel quantum gray-scale image matching. Optik 126, 3340–3343 (2015)

    Article  ADS  Google Scholar 

  35. Liu, F., Duan, H.B., Deng, Y.M.: A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Optik 123, 1955–1960 (2012)

    Article  ADS  Google Scholar 

  36. Mezghiche, K.M., Melkemi, K.E., Foufou, S.: Matching with quantum genetic algorithm and shape contexts. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), pp. 536–542 (2014)

  37. Curtis, D., Meyer, D.A.: Towards quantum template matching. In: Proceedings on SPIE 5161, Quantum Communications and Quantum Imaging, pp. 134–141 (2004)

  38. Mastriani, M.: Quantum image processing? arXiv:1512.02942, pp. 1–28 (2015)

  39. Mastriani, M.: Quantum Boolean image denoising. Springer Quantum Inf. Process. 14(5), 1647–1673 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Sabre Kais and Ph.d. Student Yudong Cao at Purdue University for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Additional information

This work is supported by the National Natural Science Foundation of China under Grants No. 61502016, the Fundamental Research Funds for the Central Universities under Grants No. 2015JBM027, and the Graduate Technology Fund of BJUT under Grants No. ykj-2015-11719.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Dang, Y. & Wang, J. Quantum image matching. Quantum Inf Process 15, 3543–3572 (2016). https://doi.org/10.1007/s11128-016-1364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1364-2

Keywords

Navigation