Skip to main content
Log in

Quantum cryptography over non-Markovian channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A three-party scheme for secure quantum communication, namely controlled quantum dialogue (CQD), is analyzed under the influence of non-Markovian channels. By comparing with the corresponding Markovian cases, it is seen that the average fidelity can be maintained for relatively longer periods of time. Interestingly, a number of facets of quantum cryptography, such as quantum secure direct communication, deterministic secure quantum communication and their controlled counterparts, quantum dialogue, quantum key distribution, quantum key agreement, can be reduced from the CQD scheme. Therefore, the CQD scheme is analyzed under the influence of damping, dephasing and depolarizing non-Markovian channels, and subsequently, the effect of these non-Markovian channels on the other schemes of secure quantum communication is deduced from the results obtained for CQD. The damped non-Markovian channel causes a periodic revival in the fidelity, while fidelity is observed to be sustained under the influence of the dephasing non-Markovian channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Here, and in what follows, all the qubits traveling from one party to another are sent in a secure manner, i.e., to send a sequence of n travel qubits, an equal number of decoy qubits are inserted randomly in the original sequence of the travel qubits, and subsequently, these decoy qubits are measured to check the existence of eavesdropper(s). Various choices of decoy qubits and the corresponding principles of security are discussed in [63].

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, p. 175 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  8. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  9. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)

    Article  MathSciNet  Google Scholar 

  10. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  11. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  15. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

  16. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. arxiv:1605.07399 (2016)

  18. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)

    Article  ADS  Google Scholar 

  20. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. (2016). doi:10.1007/s11128-016-1508-4

    Google Scholar 

  22. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Banerjee, S., Ghosh, R.: Dynamics of decoherence without dissipation in a squeezed thermal bath. J. Phys. A: Math. Theor. 40, 13735 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Srikanth, R., Banerjee, S.: The squeezed generalized amplitude damping channel. Phys. Rev. A 77, 012318 (2008)

    Article  ADS  Google Scholar 

  25. Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12, 3725 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hao, X., Zhu, S.: Enhanced quantum teleportation in non-Markovian environments. Int. J. Quantum Inf. 10, 1250051 (2012)

  27. Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340 (2010)

    Article  ADS  Google Scholar 

  28. Jun, J.W.: Non-Markovian effects on multiparticle entanglement swapping. Eur. Phys. J. D 67, 1 (2013)

    Article  Google Scholar 

  29. Jun, J.W.: Non-Markovian effects on entanglement swapping. J. Korean Phys. Soc. 60, 550 (2012)

    Article  ADS  Google Scholar 

  30. Huang, P., Zhu, J., He, G., Zeng, G.: Study on the security of discrete-variable quantum key distribution over non-Markovian channels. J. Phys. B: At. Mol. Opt. Phys. 45, 135501 (2012)

    Article  ADS  Google Scholar 

  31. Bylicka, B., Chruściński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    Article  Google Scholar 

  32. Wang, X.-B.: Quantum key distribution with two-qubit quantum codes. Phys. Rev. Lett. 92, 077902 (2004)

    Article  ADS  Google Scholar 

  33. Wang, X.-B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 050304(R) (2005)

    Article  ADS  Google Scholar 

  34. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

  35. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  36. Omkar, S., Srikanth, R., Banerjee, S.: Characterization of quantum dynamics using quantum error correction. Phys. Rev. A 91, 012324 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Omkar, S., Srikanth, R., Banerjee, S.: Quantum code for quantum error characterization. Phys. Rev. A 91, 052309 (2015)

    Article  ADS  Google Scholar 

  38. Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676 (2010)

    Article  ADS  Google Scholar 

  39. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  40. Grabert, H., Schramm, P., Ingold, G.L.: Quantum Brownian motion: the functional integral approach. Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  41. Banerjee, S., Ghosh, R.: General quantum Brownian motion with initially correlated and nonlinearly coupled environment. Phys. Rev. E 67, 056120 (2003)

    Article  ADS  Google Scholar 

  42. Banerjee, S., Ghosh, R.: Quantum theory of a Stern-Gerlach system in contact with a linearly dissipative environment. Phys. Rev. A 62, 042105 (2000)

    Article  ADS  Google Scholar 

  43. Ban, M.: Decoherence of continuous variable quantum information in non-Markovian channels. J. Phys. A: Math. Gen. 39, 1927 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Piilo, J., Maniscalco, S., Härkönen, K., Suominen, K.A.: Non-Markovian quantum jumps. Phys. Rev. Lett. 100, 180402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Maniscalco, S., Petruccione, F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. Paz, J.P., Roncaglia, A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)

    Article  ADS  Google Scholar 

  47. An, J.H., Zhang, W.M.: Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels. Phys. Rev. A 76, 042127 (2007)

    Article  ADS  Google Scholar 

  48. Nourmandipour, A., Tavassoly, M.K., Rafiee, M.: Dynamics and protection of entanglement in n-qubit systems within Markovian and non-Markovian environments. Phys. Rev. A 93, 022327 (2016)

    Article  ADS  Google Scholar 

  49. Novais, E., Mucciolo, E.R., Baranger, H.U.: Hamiltonian formulation of quantum error correction and correlated noise: effects of syndrome extraction in the long-time limit. Phys. Rev. A 78, 012314 (2008)

    Article  ADS  Google Scholar 

  50. Shiokawa, K., Hu, B.L.: Non-Markovian quantum error deterrence by dynamical decoupling in a general environment. Quantum Inf. Process. 6, 55 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen, P.: Dynamical decoupling-induced renormalization of non-Markovian dynamics. Phys. Rev. A 75, 062301 (2007)

    Article  ADS  Google Scholar 

  52. Lu, X.M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  53. Xu, J.S., Li, C.F., Gong, M., Zou, X.B., Shi, C.H., Chen, G., Guo, G.C.: Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 104, 100502 (2010)

    Article  ADS  Google Scholar 

  54. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931 (2011)

    Article  Google Scholar 

  55. Orieux, A., d’Arrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  56. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  57. Dajka, J., Mierzejewski, M., Łuczka, J.: Non-Markovian entanglement evolution of two uncoupled qubits. Phys. Rev. A 77, 042316 (2008)

    Article  ADS  Google Scholar 

  58. Cao, X., Zheng, H.: Non-Markovian disentanglement dynamics of a two-qubit system. Phys. Rev. A 77, 022320 (2008)

    Article  ADS  Google Scholar 

  59. Daffer, S., Wódkiewicz, K., Cresser, J.D., McIver, J.K.: Depolarizing channel as a completely positive map with memory. Phys. Rev. A 70, 010304 (2004)

    Article  ADS  Google Scholar 

  60. Schlosshauer, M.A.: Decoherence: And The Quantum-to-classical Transition. Springer, Berlin (2007)

    Google Scholar 

  61. Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    Article  ADS  Google Scholar 

  63. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Miranowicz, A., Bartkiewicz, K., Pathak, A., Peřina Jr., J., Chen, Y.N., Nori, F.: Statistical mixtures of states can be more quantum than their superpositions: comparison of nonclassicality measures for single-qubit states. Phys. Rev. A 91, 042309 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AP and KT thank Defense Research & Development Organization (DRDO), India, for the support provided through the Project Number ERIP/ER/1403163/M/01/1603. SB acknowledges support by the Project Number 03(1369)/16/EMR-II funded by Council of Scientific and Industrial Research, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, K., Pathak, A. & Banerjee, S. Quantum cryptography over non-Markovian channels. Quantum Inf Process 16, 115 (2017). https://doi.org/10.1007/s11128-017-1567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1567-1

Keywords

Navigation