Skip to main content
Log in

Inorganic carbon acquisition by eukaryotic algae: four current questions

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The phylogenetically and morphologically diverse eukaryotic algae are typically oxygenic photolithotrophs. They have a diversity of incompletely understood mechanisms of inorganic carbon acquisition: this article reviews four areas where investigations continue. The first topic is diffusive CO2 entry. Most eukaryotic algae, like all cyanobacteria, have inorganic carbon concentrating mechanisms (CCMs). The ancestral condition was presumably the absence of a CCM, i.e. diffusive CO2 entry, as found in a small minority of eukaryotic algae today; however, it is likely that, as is found in several cases, this condition is due to a loss of a CCM. There are a number of algae which are in various respects intermediate between diffusive CO2 entry and occurrence of a CCM: further study is needed on this aspect. A second topic is the nature of cyanelles and their role in inorganic carbon assimilation. The cyanelles (plastids) of the euglyphid amoeba Paulinella have been acquired relatively recently by endosymbiosis with genetic integration of an α-cyanobacterium with a Form 1A Rubisco. The α-carboxysomes in the cyanelles are presumably involved in a CCM, but further investigation is needed.Also called cyanelles are the plastids of glaucocystophycean algae, but is it now clear that these were derived from the β-cyanobacterial ancestor of all plastids other than that of Paulinella. The resemblances of the central body of the cyanelles of glaucocystophycean algae to carboxysomes may not reflect derivation from cyanobacterial β-carboxysomes; although it is clear that these algae have CCMs but these are now well characterized. The other two topics concern CCMs in other eukaryotic algae; these CCMs arose polyphyletically and independently of the cyanobacterial CCMs. It is generally believed that eukaryotic algal, like cyanobacterial, CCMs are based on active transport of an inorganic carbon species and/or protons, and they have C3 biochemistry. This is the case for the organism considered as the third topic, i.e. Chlamydomonas reinhardtii, the eukaryotic alga with the best understood CCM. This CCM involves HCO3 conversion to CO2 in the thylakoid lumen so the external inorganic carbon must cross four membranes in series with a final CO2 effux from the thylakoid. More remains to be investigated about this CCM. The final topic is that of the occurrence of C4-like metabolism in the CCMs of marine diatoms. Different conclusions have been reached depending on the organism investigated and the techniques used, and several aspects require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622. doi:10.1093/jxb/erg076

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii. Plant Physiol 66:407–413

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and co-evolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2 concentrating mechanisms in the algae. Can J Bot 76:1052–1071

    Article  CAS  Google Scholar 

  • Badger MR, Hanson M, Price GD (2002) Evolution and diversity of CO2-concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173. doi:10.1071/PP01213

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2-concentrating mechanism. J Exp Bot 57:249–265. doi:10.1093/jxb/eri286

    Article  PubMed  CAS  Google Scholar 

  • Balkos KD, Colman B (2007) Mechanism of CO2 acquisition in an acid-tolerant Chlamydomonas. Plant Cell Environ 30:745–752. doi:10.1111/j.1365-3040.2007.001662.x

    Article  PubMed  CAS  Google Scholar 

  • Bar-Even A, Noor E, Lewis NE, Milo R (2010, in press) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA. doi:10.1073/pnas.09.0716107

  • Bauwe H (2010) Recent developments in photorespiration research. Biochem Soc Trans 38:677–682. doi:10.1042/BST0ST380677

    Article  PubMed  CAS  Google Scholar 

  • Beardall J, Mukerji D, Glover H, Morris I (1976) The path of carbon in photosynthesis by marine phytoplankton. J Phycol 12:409–417

    CAS  Google Scholar 

  • Beardall J, Allen D, Bragg J, Finkel ZV, Flynn KJ, Quigg A, Rees TAV, Richardson A, Raven JA (2009a) Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol 181:295–309. doi:10.1111/j.1469-8137.2008.02660.x

    Article  PubMed  CAS  Google Scholar 

  • Beardall J, Stojkovic S, Larsen S (2009b) Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecol Divers 2:191–205. doi:10.1090/17550870903271363

    Article  Google Scholar 

  • Bhatti S, Colman B (2005) Inorganic carbon acquisition by the chrysophyte Mallomonas pusilla. Can J Bot 83:891–897. doi:10.1139/B05-075

    Article  CAS  Google Scholar 

  • Bhatti S, Colman B (2008) Inorganic carbon acquisition by some synurophyte algae. Physiol Plant 133:33–40. doi:10.1139/j.1399-3054.2008.09061.x

    Article  PubMed  CAS  Google Scholar 

  • Blank RJ (1985) Is the central body of the cyanelle of Cyanophora paradoxa a carboxysome? Enocyotobiosis Cell Res 2:113–117

    Google Scholar 

  • Bowler C, Vardi A, Allen EA (2010) Oceanographic and biogeochemical insights from diatom genomics. Annu Rev Mar Sci 2:355–365. doi:10.1146/annurev-marine-120308-081051

    Article  Google Scholar 

  • Burey SC, Fathi-Nejad S, Poryako V, Loffelhardt W, Bohnert HJ (2005) The central body of Cyanophora pradoxa: a eukaryotic carboxysome? Can J Bot 83:758–764. doi:10.1139/B05-060

    Article  CAS  Google Scholar 

  • Burey SC, Poryoko V, Eregon ZN, Fathi-Nejad S, Schuller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Loffelhardt W (2007) Acclimation to low CO2 by the inorganic carbon-concentrating mechanism of Cyanophora paradoxa. Plant Cell Environ 30:1422–1435. doi:10.1111/j.1365-30403.2007.01715x

    Article  PubMed  CAS  Google Scholar 

  • Cassar N, Laws EA (2007) Potential contribution of β-carboxylases to photosynthetic carbon isotope fractionation ion a marine diatom. Phycologia 44:393–402. doi:10.2216/06-50.1

    Google Scholar 

  • Clark DR, Flynn KJ (2000) The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. Proc R Soc Lond B 267:953–959. doi:10.1098/rspb.2000.1096

    Article  CAS  Google Scholar 

  • Colman B, Balkos K-D (2005) Mechanisms of inorganic carbon acquisition by Euglena species. Can J Bot 83:865–871. doi:1139/B05-072

    Article  CAS  Google Scholar 

  • Cruz JA, Kanazawa A, Treff N, Kramer DM (2005) Storage of light-driven transthylakoid pmf as an electrical field under steady-state conditions in intact cells of Chlamydomonas. Photosynth Res 85:1573–1579. doi:10.1007/51120-005-4731-x

    Article  CAS  Google Scholar 

  • Diaz MM, Maberly SC (2009) Carbon-concentrating mechanisms in acidophilic algae. Phycologia 48:77–85. doi:10.22116/08-08.1

    Article  CAS  Google Scholar 

  • Duanmu DQ, Wang YJ, Spalding MH (2009a) Thylakoid lumen carbonic anhydrase (CAH3) mutation suppresses air-dier phenotype of LCIB mutant in Chlamydomonas reinhardtii. Plant Physiol 149:929–937. doi:10.1104/pp.108.132456

    Article  PubMed  CAS  Google Scholar 

  • Duanmu DQ, Miller AR, Harker KM, Weeks DP, Spalding MH (2009b) Knockdown of limiting CO2-induced HLA3 decreases CO2 transport and photosynthetic inorganic carbon affinity in Chamydomonas reinhardtii. Proc Natl Acad Sci USA 106:5990–5995. doi:10.1073/pnas.0812885106

    Article  PubMed  Google Scholar 

  • Eisenhut M, Kahlon S, Hasse D, Ewald R, Lienman-Hurwitz J, Oawa T, Wolfgang R, Baume H, Kaplan A, Hamann M (2006) The plant-like C2 glycolate pathway and bacteria-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142:333–342. doi:120.1104/pp.106.082982

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovitch M, Bauwe H, Kaplan A, Hagemann (2008) The photorespiratory glycolate metabolism may have been conveyed symbiotically to plants. Proc Natl Acad Sci USA 105:17199–17204. doi:10.1073/pnas.0807043105

    Article  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, USA

    Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolutionary history of eukaryotic phytoplankton. Science 305:354–360. doi:10.1126/science.1095964

    Article  PubMed  CAS  Google Scholar 

  • Fathinejad S, Steiner JH, Reipert S, Machetti M, Allmaier G, Burey SC, Ohnishi N, Fukuzawa M, Loffelhardt W, Bohnert HJ (2008) A carboxysomal carbon-concentrating mechanism in the cyanelles of the “coelacanth” of the algal world, Cyanophora paradoxa? Phys Plant 133:27–32. doi:10.1111/j.1399-3054.2007.1030.x

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137. doi:10.1093/plankt/fbp098

    Article  CAS  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics and redox signaling. Annu Rev Plant Biol 60:455–484. doi:10.1146/annurev.arplant.043008.091948

    Article  PubMed  CAS  Google Scholar 

  • Frassanito AM, Barsanti L, Passarelli V, Evangelista V, Gualtieri P (2010) A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization. Cell Mol Life Sci 67:965–971. doi:10.1007/s00018-009-0225-x

    Article  PubMed  CAS  Google Scholar 

  • Friedberg D, Jager KH, Silman NJ, Bergman B (1993) Rubisco but not Rubisco activase is clustered in the carboxysomes of the cyanobacterium Synchococcus sp. PCC 7942: Mud-induced carboxysomeless mutants. Mol Microbiol 6:1193–1201

    Article  Google Scholar 

  • Gadd GM, Raven JA (2010, in press) Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J

  • Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–2134. doi:10.1104/pp.103.023424

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131. doi:10.1146/annurev.arplant.56.032604.144052

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Granum E, Raven JA, Leegood RC (2005) How do marine diatoms fix ten billion tonnes of inorganic carbon per year? Can J Bot 83:898–908. doi:10.1139/B05-077

    Article  CAS  Google Scholar 

  • Granum E, Roberts K, Raven JA, Leegood RC (2009) Primary carbon and nitrogen metabolic gene expression in the diatom Thalassiosira pseudonana (Bacillariophyceae): Diel periodicity and effects of inorganic carbon and nitrogen. J Phycol 45:1083–1092. doi:10.1111/j.1529-8817.2009.00728.x

    Article  CAS  Google Scholar 

  • Groben R, Kaloudas D, Raines CA, Offman B, Maberly SC, Gontero B (2010) Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms. Photosynth Res 103:183–194. doi:10.1007/s11120-010-9542-z

    Article  PubMed  CAS  Google Scholar 

  • Hanson DT, Franklin LA, Samuelsson G, Badger MR (2003) The Chlamydomonas reinhardtii Cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited to CO2 supply and not photosystem II activity in vivo. Plant Physiol 132:2267–2275. doi:10.1104/pp.103.023481

    Article  PubMed  CAS  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental design. J Phycol 45:1236–1251. doi:10.1111/j.1529.8817.2009.00768.x

    Article  CAS  Google Scholar 

  • Johnston AM, Raven JA, Beardall J, Leegood RC (2001) Photosynthesis in a marine diatom. Nature 112:40–41

    Article  Google Scholar 

  • Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH (2009) Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc Natl Acad Sci USA 106:16925–16929. doi:10.1073/pnas.0909248106

    Article  PubMed  Google Scholar 

  • Karlsson J, Hiltonen T, Husic D, Ramazanov Z, Samuelsson G (1995) Intracellular carbonic anhydrase of Chlamydomonas reinhardti. Plant Physiol 109:533–539

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Clarke AK, Chen Z-Y, Hugghins SY, Park Y-I, Husic DH, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Phil Trans R Soc Lond B 356:729–748. doi:10.1098/rstb.2009.0103

    Article  CAS  Google Scholar 

  • Kevekordes K, Holland D, Häubner N, Jenkins S, Kos R, Roberts S, Raven JA, Scrimgeour CM, Shelly K, Stojkovic S, Beardall J (2006) Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 45:442–449. doi:10.216/05-55.1

    Article  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE 1:e1426. doi:10.1371/journal.pone.0001426

    Article  CAS  Google Scholar 

  • Kuchitsu K, Tsuzuki H, Miyachi S (1991) Polypeptide composition and enzyme activities of the pyrenoid and its regulation and its regulation by low CO2 concentration. Can J Bot 69:1062–1069

    Article  CAS  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1052–1061. doi:10.1111/j.1529-8817.2009.00734.x

    Article  CAS  Google Scholar 

  • Maberly SC, Courelle C, Groben R, Contero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61:735–745. doi:10.1093/jxb/erp337

    Article  PubMed  CAS  Google Scholar 

  • MacKay RJL, Gibbs SP (1991) Composition and function of pyrenoids—cytochemical and immunochemical approaches. Can J Bot 69:1040–1053

    Article  Google Scholar 

  • Mangeney E, Hawthornthwaite AM, Codd GA, Gibbs SP (1987) Immunocytochemical localization of phosphoribulokinase in the cyanelles of Cyanophora paradoxa and Glaucocystis mostochineanum. Plant Physiol 84:1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432. doi:10.1016/j.1016/jprotis.2005.09.001

    Article  PubMed  CAS  Google Scholar 

  • Marin B, Nowacj ECM, Glockner G, Melkonian M (2007) The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7:85. doi:10.1186/1471-2148-7-85

    Google Scholar 

  • Markelova AG, Sinetova MP, Kurianova EV, Pronina NA (2009) Distribution and functional role of carbonic anhydrase cah3 associated with thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas reinhardtii. Russ J Plant Physiol 6:761–768

    Article  CAS  Google Scholar 

  • Marsden WJN, Lanaras T, Codd GA (1984) Subcellular segregation of phosphoribulokinase and ribulose-1, 5-bisphosphate carboxylase-oxygenase in the cyanobacterium Chlorogoeopsis fritschii. J Gen Microbiol 130:2089–2093

    CAS  Google Scholar 

  • Martin W, Schnarrenberger C (1997) The evolution of the Calvin Cycle from prokaryotic to eukaryotic chromosomes: a case of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18

    Article  PubMed  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008a) Expression and inhibition of the carboxylation and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309. doi:10.1104/pp/.107.110561

    Article  PubMed  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008b) Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol Plant 133:79–91. doi:10.1111/j.1399-3054.01039.x

    Article  CAS  Google Scholar 

  • Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV (2004) Identification of a new carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 135:173–182. doi:10.1104/pp.103.037283

    Article  PubMed  CAS  Google Scholar 

  • Mitra M, Mason CB, Xiao Y, Ynalvez RA, Lato SM, Mooney JV (2005) The carbonic anhydrase gene families of Chlamydomonas reinhardtii. Can J Bot 83:780–785. doi:10.1139/B05-065

    Article  CAS  Google Scholar 

  • Moll B, Levine RP (1970) Characterization of a photosynthetic mutant strain of Chlamydomonas reinhardti deficient in phosphoribulokinase activity. Plant Physiol 46:576–580

    Article  PubMed  CAS  Google Scholar 

  • Morel FMM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schapendoth I, Reinfelder JR, Tortell PD (2002) Inorganic carbon acquisition by the marine diatom. Thalassosira weisssflogii. Funct Plant Biol 29:301–308. doi:10.1071/PP01199

    Article  CAS  Google Scholar 

  • Morita E, Abe T, Tsuzuki M, Fujiwara S, Sato N, Hirata N, Sonoike K, Nokazaki H (1999) The role of pyrenoids in the CO2-concentrating mechanism: comparative morphology, physiology and molecular phylogenetic analyses of related strains of Chlamydomonas and Chloromonas. Planta 208:365–372

    Article  Google Scholar 

  • Moroney JV, Ynalvez RA (2007) Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot Cell 6:1251–1259. doi:10.1128/E-C.00064-07

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Ishida K (2009) Another acquisition of primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol 19:R284–R285

    Article  PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Phil Trans R Soc B 365:699–712. doi:10.1098/rstb.2009.0188

    Article  PubMed  CAS  Google Scholar 

  • Nowack ECM, Melkonian M, Glockner G (2008) Chromatophore genome sequence sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418. doi:10.1016/j/cub.2008.02.051

    Article  PubMed  CAS  Google Scholar 

  • Nunn BL, Aker JR, Shaffer SA, Teai Y, Strzepek RF, Boyd PW, Freeman TL, Brittnacher M, Malmström L, Goodlett DR (2009) Deciphering diatom biochemical pathways via whole-cell proteomics. Aquat Microb Ecol 55:241–253. doi:10.3354/ame01284

    Article  PubMed  Google Scholar 

  • Park YI, Karlsson J, Rodeslveski I, Pronina N, Klimov V, Öqvist G, Samulesson G (1999) Role of a nove hotosystem II-associated carbonic anhydrase in Chlamydomonas reinhardtii. FEBS Lett 444:102–105

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacteral CO2-concentrating mechanism (CCM): functional components, Ci transporters, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1446. doi:10.1093/jxb/erm112

    Article  PubMed  CAS  Google Scholar 

  • Pronina NA, Borodin VV (1993) CO2 stress and CO2 concentration mechanism: investigation by means of photosystem-deficient and carbonic anhydrase-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 28:515–522

    CAS  Google Scholar 

  • Pronina NA, Semenenko VE (1990) Membrane-bound carbonic anhydrase takes place in CO2-concentration in algal cells. In: Baltscheffsky M (ed) Current research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 489–492

    Google Scholar 

  • Quigg A, Beardall J (2003) Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae. Plant Cell Environ 26: 693–703

    Google Scholar 

  • Quigg A, Beardall J, Wydrzynski T (2003) Photoaclimation involves modulation of the photosynthetic O2-evolving reactions in Dunaliella tertiolecta and Pheodactylum tricornutum. Funct Plant Biol 30:301–308. doi:10.1071/FP02140

    Article  Google Scholar 

  • Quigg A, Kevekordes K, Raven JA, Beardall J (2006) Limitations on microalgal growth at very low photon fluence rates: the role of energy slippage. Photosynth Res 88:299–310. doi:10.1007/s11120-006-9052-1

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1997) CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ 20:147–154

    Article  CAS  Google Scholar 

  • Raven JA (2003) Carboxysomes and peptidoglycan walls of cyanelles: Possible physiological functions. Eur J Phycol 38:47–53. doi:10.1080/0967026031000096245

    Article  Google Scholar 

  • Raven JA (2009a) Contributions of anoxygenic and oxygenic phototrophy and photolithotrophy to carbon and oxyen fluxes in aquatic environments. Aquat Microb Ecol 56:177–192. doi:10.3354/ame01315

    Article  Google Scholar 

  • Raven JA (2009b) Functional evolution of photochemical energy transformations in oxygen-producing organisms. Funct Plant Biol 36:505–515. doi:10.1071/FP09087

    Article  CAS  Google Scholar 

  • Raven JA, Girard-Bascou J (2001) Algal model systems and the elucidation of photosynthetic mechanisms. J Phycol 37:943–950

    Article  CAS  Google Scholar 

  • Raven JA, Brown K, Mackay M, Beardall J, Giordano M, Granum E, Leegood RC, Kilminster K, Walker DI (2005b) Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans. In: Society for General Microbiology Symposium, vol 65. Micro-organisms and earth systems: advances in Geobiology. eds. G M Gadd, K T Semple and H M Lappin-Scott. pp. 247-272. Cambridge University Press, Cambridge

  • Raven JA, Larkum AWD (2007) Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? Photosynth Res 94:31–42. doi:10.1007/s11120-007-9211-z

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Lucas WJ (1985) The energetic of carbon acquisition. In: Lucas WJ, Berry JA (eds) Inorganic carbon uptake by aquatic photosynthetic organisms. American Society of Plant Physiologists, Rockville, Maryland, pp 305–324

    Google Scholar 

  • Raven JA, Kübler JE, Beardall J (2000) Put out the light, and the put out the light. J Mar Biol Assoc UK 80:1–25

    Article  CAS  Google Scholar 

  • Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005a) Algae lacking carbon concentrating mechanisms. Can J Bot 83:879–890. doi:10.1139/B05-074

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987. doi:10.1093/jxb/erp282

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111. doi:10.1104/pp14.041319

    Article  PubMed  CAS  Google Scholar 

  • Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88:2883–2887

    Article  PubMed  CAS  Google Scholar 

  • Reiskind JB, Seamen PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol 87:686–692

    Article  PubMed  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007a) Carbon acquisition by diatoms. Photosynth Res 93:79–88. doi:10.1007/s11120-007-9172-2

    Article  PubMed  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007b) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235. doi/10.1104/pp.107.102616

    Google Scholar 

  • Satoh H, Okada M, Matyara H, Hunda T (1985) Purification of ribulose 5-phosphate kinase and minor polypeptides of the pyrenoid of the green alga Bryopsis maxima. Plant Cell Physiol 26:931–940

    CAS  Google Scholar 

  • Savir Y, Noor E, Milo R, Tlusty T (2010, in press) Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci USA. www.pnas.prg/cgi/doi/10.1073/pnas.0911663107

  • Shutova T, Kenneweg H, Buchta T, Nikitina J, Terentyev V, Chemyshov S, Andersson B, Allakberdsev SI, Klimov VV, Dau H, Junge W, Samuelsson G (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2-evolution rate by proton removal. EMBO J 27:787–791. doi:10.1038/emboj.2008.12

    Article  CAS  Google Scholar 

  • Spalding MH (2008) Microalgal carbon-dioxide-concentrating mechanisms: Chlamydomonas inorganic carbon transporters. J Exp Bot 59:1463–1473. doi:10.1093/jxb/erm128

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Miyagishima S (2010) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590. doi:10.1093/molbev/msp273

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Takechi K (2010) Chloroplast peptidoglycan. Biochim Biophys Acta 1800:144–151. doi:10.1016/j.baagen.2009.020

    PubMed  CAS  Google Scholar 

  • Tang Q-X, Wei J-M (2001) Contribution of ΔpH and ΔE to photosynthesis of Chlamydomonas reinhardtii. Photosynthetica 39:127–129

    Article  CAS  Google Scholar 

  • Tcherkez GG, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7251. doi:10.1073/pnas.0600605103

    Article  PubMed  CAS  Google Scholar 

  • Tchernov D, Livne A, Kaplan A, Sukenik A (2008) The kinetic properties of ribulose-1, 5-bisphosphate carboxylase/oxygenase may explain the high photosynthetic affinity of Nannochloropsis sp. to ambient inorganic carbon. Isr J Plant Sci 56:37–44

    Article  CAS  Google Scholar 

  • Trimborn S, Wolf-Gladrow D, Richter K-U, Rost B (2009) The effects of pCO2 on carbon acquisition in four marine diatoms. J Exp Mar Biol Ecol 376:26–36. doi:10.1016/j/jembe.2009.05.017

    Article  CAS  Google Scholar 

  • Tsuji Y, Suzuki I, Shiraiwa Y (2009) Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): evidence for the predominant operation of the C3 cycle and the contribution of the β-carboxylases to the active anaplerotic reaction. Plant Cell Physiol 50:318–329. doi:10.1093/pcp/pcn200

    Article  PubMed  CAS  Google Scholar 

  • Van den Hoek C, Mann DG, Jahns H (1995) Algae. An introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Verma V, Bhati S, Huss VAR, Colman B (2009) Photosynthetic inorganic carbon assimilation in a free-living species of Coccomyxa (Chlorophyta). J Phycol 45:847–854. doi:j.1529-8817.2009.00718.x

    Article  CAS  Google Scholar 

  • Wilhelm C, Buchel C, Fisahn J, Goss T, Jakob J, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stahfest K, Valentin K, Roth PG (2006) The regulation of carbon and nitrogen assimilation in diatoms is significantly different from green algae. Protist 157:91–124. doi:10.1016/j.protis.2006.02.003

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Fukuzawa H (2009) Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analysis. J Basic Microbiol 49:42–51. doi:10.1002/jobm.2008.00352

    Article  PubMed  CAS  Google Scholar 

  • Ynalvez RA, Moroney JV (2008) Identification and characterization of a novel inorganic carbon acquisition gene, CIA7, from an insertional mutation of Chlamydomonas reinhardtii. Funct Plant Biol 25:373–381. doi:10.1017/FP08005

    Article  CAS  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Nakayama T, Reyes-Prieto A, Anderson RA, Boo SM, Ishida K, Bhattachrya D (2009) A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Mol Biol (Art 98, doi:10.1186/147-2148-9-98

Download references

Acknowledgements

The author gratefully acknowledges discussions with John Beardall, Kate Crawfurd, Mario Giordano, Espen Granum, Richard Leegood, Stephen Maberly and Karen Roberts, which have proved particularly helpful. The author’s research on inorganic carbon acquisition is funded by the National Environment Research Council UK. The University of Dundee is a registered Scottish Charity No. 015096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Raven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raven, J.A. Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106, 123–134 (2010). https://doi.org/10.1007/s11120-010-9563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9563-7

Keywords

Navigation