Skip to main content

Structural and Biochemical Features of Carbon Acquisition in Algae

  • Chapter
  • First Online:
Photosynthesis in Algae: Biochemical and Physiological Mechanisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 45))

Abstract

Inorganic carbon assimilation in algae depends ultimately on the activity of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) and the Calvin-Benson-Bassham Cycle (Photosynthetic Carbon Reduction Cycle; PCRC). The kinetic characteristics of the different forms of Rubisco found in algae and cyanobacteria are such that under present day levels of CO2 and oxygen, inefficiencies in carbon assimilation, involving, inter alia, photorespiration would occur. Given this, achievement of significant rates of net photosynthesis necessitates the operation of CO2 concentrating mechanisms (CCMs) to elevate CO2 concentrations, and increase CO2:O2 ratios at the active site of Rubisco. The biochemical, C4 photosynthesis, CCM appears to be limited to the marine ulvophycean alga Udotea flabellum and one species of a marine diatom (Thalassiosira weisflogii) as well as in some seagrasses and freshwater macrophytes. With few exceptions all other algae and the cyanobacteria possess a biophysical CCM, based on active transport of inorganic carbon. Despite many years of research into CCMs, there is still a good deal of misunderstanding about what comprises reliable and robust evidence for CCM activity. By definition, there needs to be a demonstrable net positive gradient of CO2 in > CO2 out. In addition, cells with active CCMs have K0.5CO2 values for DIC-dependent photosynthesis less than that for their Rubiscos. Other features such as isotope discrimination can also be useful, with cells using CO2 diffusion alone showing ∆13C values ~ −30‰ and discrimination values becoming less negative as CCM activity increases. However, the presence of gene sequences for, or even expressed activity of, enzymes such as PEP carboxylase, are not good indicators of operation of C4 photosynthesis. It is a common misconception that possession of external carbonic anhydrase can alone result in CO2 accumulation. CCMs involve active transport of bicarbonate and/or CO2. In cyanobacteria this occurs at the thylakoid membrane or plasmalemma and in eukaryotes at the plasmalemma or inner plastid envelope, or both. CCMs in cyanobacteria also involve polyhedral protein-walled bodies termed carboxysomes it is here that the bulk of Rubisco is found and CO2 is accumulated due to the activity of carbonic anhydrase. The analogous structure found in some eukaryotes is the pyrenoid (Chap. 9). All pyrenoid-containing algae have CCMs but not all algae with CCMs have pyrenoids. Though work on eukaryotic algae has, so far, lagged behind that in cyanobacteria new advances in molecular biology have led to identification of many of the proteins, and elucidation of the mechanisms, involved in inorganic carbon acquisition.

*Author for correspondence, e-mail:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera A, Berrendero Gómez E, Kastovsky J, Echenique RO, Salerno GL (2018) The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57:130–146

    CAS  Google Scholar 

  • Amoroso G, Sültemeyer DF, Thyssen C, Fock HP (1998) Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiol 116:193–201

    CAS  PubMed Central  Google Scholar 

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059

    CAS  PubMed  Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) The internal inorganic carbon pool of Chlamydomonas reinhardtii: evidence for a CO2 concentrating mechanism. Plant Physiol 66:407–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubiscos, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA 107:8888–8894

    Google Scholar 

  • Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50:4402–4404

    CAS  PubMed  Google Scholar 

  • Bar-Even A, Noor E, Milo R (2012) A survey of carbon fixation pathways through a quantitative lens. J Exp Bot 63:2325–2342

    CAS  PubMed  Google Scholar 

  • Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD (2018) Rubisco is not really so bad. Plant Cell Environ 41:705–716

    CAS  PubMed  Google Scholar 

  • Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CCMs and their regulation. Funct Plant Biol 29:335–347

    CAS  PubMed  Google Scholar 

  • Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka M, Beardall J, Raven JA (eds) The physiology of microalgae. Springer Verlag, Berlin, pp 89–100

    Google Scholar 

  • Beardall J, Raven JA (2017) Cyanobacteria vs green algae, which group has the edge? J Exp Bot 68:3697–3699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beardall J, Mukerji D, Glover HE, Morris I (1976) The path of carbon in photosynthesis by marine phytoplankton. J Phycol 12:409–417

    CAS  Google Scholar 

  • Beardall J, Griffiths H, Raven JA (1982) Carbon isotope discrimination and the CO2 accumulating mechanism in Chlorella emersonii. J Exp Bot 33:729–737

    CAS  Google Scholar 

  • Beardall J, Roberts S, Millhouse J (1991) Effects of nitrogen limitation on inorganic carbon uptake and specific activity of ribulose-1,5-P2 carboxylase in green microalgae. Can J Bot 69:1146–1150

    CAS  Google Scholar 

  • Beardall J, Quigg AS, Raven JA (2003) Oxygen consumption: photorespiration and chlororespiration. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in the Algae. Kluwer Academic Publishers, Dordrecht, pp 157–181

    Google Scholar 

  • Bhatti S, Colman B (2008) Inorganic carbon acquisition in some synurophyte algae. Physiol Plant 133:33–40

    CAS  PubMed  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. https://doi.org/10.1186/gb-2012-13-5-r39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggetto N, Gontero B, Maberly SC (2007) Regulation of phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase in a freshwater diatom, Asterionella formosa. J Phycol 43:1227–1235

    CAS  Google Scholar 

  • Boller AJ, Thomas PJ, Cavenaugh CM, Scott KM (2011) Low stable isotope fractionation by coccolithophore RuBISCO. Geochim Cosmochim Acta 75:7200–7207

    CAS  Google Scholar 

  • Boller AJ, Thomas PJ, Cavenaugh CM, Scott KM (2015) Isotopic discrimination and kinetic parameters of RUBISCO from the marine bloom-forming diatom, Skeletonema costatum. Geobiology 13:33–43

    CAS  PubMed  Google Scholar 

  • Bonar PT, Casey JR (2008) Plasma membrane Cl/HCO3 exchangers: structure, mechanism and physiology. Channels 2:337–345

    PubMed  Google Scholar 

  • Borkhsenious ON, Mason CB, Moroney JV (1998) The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Plant Physiol 116:1585–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowes G (2011) Single-cell C4 photosynthesis in aquatic plants. In: Raghevendra AS, Sage R (eds) C4 photosynthesis and related CO2 concentrating mechanisms. Springer, Berlin, pp 63–80

    Google Scholar 

  • Bowes G, Holaday AS, Van TK, Haler W (1978) Photosynthetic and photorespiratory carbon metabolism in aquatic plants. In: Hall DO, Coombs J, Goodwin TW (eds) Photosynthesis 77, proceedings of the Fourth International Congress on Photosynthesis. The Biochemical Society, London, pp 289–298

    Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: a comparison with terrestrial C4 systems. Funct Plant Biol 29:379–392

    CAS  PubMed  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391

    CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    CAS  PubMed  Google Scholar 

  • Chi S, Wu S, Yu J, Wang X, Tang X, Liu T (2014) Phylogeny of C4-photosynthesis genes based on algal and genomic data supports an archaeal/proteobacterial origin and multiple duplications for most C4-related genes. PLoS One 9:e110154

    PubMed  PubMed Central  Google Scholar 

  • Clement R, Lignon S, Mansuelle P, Jensen E, Pophillat M, Lebrun R, Denis Y, Pupo C, Maberly SC, Gontero B (2017) Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: a proteomic approach. Sci Rep 7:42333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924

    CAS  Google Scholar 

  • Di Mario RJ, Machingura MC, Waldrop GL, Moroney JV (2017) The many types of carbonic anhydrases in photosynthetic organisms. Plant Sci 268:11–17

    Google Scholar 

  • Dodge JD (1973) The fine structure of Algal cells. Academic, London, p 261

    Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiotically to plants. Proc Natl Sci USA 105:17199–17204

    CAS  Google Scholar 

  • Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. elife 4:e04889

    PubMed  PubMed Central  Google Scholar 

  • Espie GS, Kimber MS (2011) Carboxysomes: cyanobacterial RubisCO comes in small packages. Photosynth Res 109:7–20

    CAS  PubMed  Google Scholar 

  • Ewe D, Tachibana M, Kikutani S, Gruber A, Rio Bártulos S, Konert G, Kaplan A, Matsuda Y, Kroth PG (2018) The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Photosynth Res 137:263–283

    CAS  PubMed  Google Scholar 

  • Flynn KJ, Raven JA (2017) What is the limit for photoautotrophic growth rates? J Plankton Res 39:13–22

    CAS  Google Scholar 

  • Flynn KJ, Blackford JC, Baird ME, Raven JA, Clark DR, Beardall J, Brownlee C, Fabian H, Wheeler GL (2012) Changes in pH at the exterior surface of plankton with ocean acidification. Nat Clim Chang 2:510–513

    CAS  Google Scholar 

  • Gee CW, Niyogi KK (2017) The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism of Nannochloropsis oceanica. Proc Natl Acad Sci USA 114:4537–4547

    CAS  PubMed  Google Scholar 

  • Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–2134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 6:99–131

    Google Scholar 

  • Griffiths H, Meyer MT, Rickaby REM (2017) Overcoming adversity through diversity: aquatic carbon concentrating mechanisms. J Exp Bot 68:3689–3695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guiry M (2012) How many species of algae are there? J Phycol 48:1057–1063

    PubMed  Google Scholar 

  • Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New Phytol 197:177–185

    CAS  PubMed  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose 1,5- bisphosphate carboxylase/oxygenase (RubisCO)–like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci U S A 98:4397–4402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiol 65:331–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkinson BM, Meile C, Shen C (2013) Quantification of extracellular carbonic anhydrase in two marine diatoms and investigation of its role. Plant Physiol 162:1142–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkinson BM, Young JN, Tansik AL, Binder BJ (2014) The minimal CO2-concentrating mechanism of Prochlorococcus spp. MED4 is effective and efficient. Plant Physiol 166:2205–2217

    PubMed  PubMed Central  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci USA 108:3830–3837

    CAS  PubMed  Google Scholar 

  • Hu HH, Zhou QB (2010) Regulation of inorganic carbon acquisition by nitrogen and phosphorus levels in the Nannnochloropsis sp. World J Microbiol Biotechnol 26:957–961

    CAS  Google Scholar 

  • Huertas IE, Colman B, Espie GS (2002) Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct Plant Biol 29:271–277

    CAS  PubMed  Google Scholar 

  • Iglesias-Rodriguez MD, Nimer NA, Merrett MJ (1998) Carbon dioxide-concentrating mechanism and the development of extracellular carbonic anhydrase in the marine picoeukaryote Micromonas pusilla. New Phytol 140:685–690

    CAS  Google Scholar 

  • Jensen E, Clement R, Maberly S, Gontero B (2017) Regulation of the Calvin–Benson–Bassham cycle in the enigmatic diatoms: biochemical and evolutionary variations on an original theme. Philos Trans R Soc Lond B 372:20160401

    Google Scholar 

  • Ji X, Verspagen JMH, Stomp M, Huisman J (2017) Competition between cyanobacteria and green algae at low versus elevated CO2: who will win, and why? J Exp Bot 68:3815–3828

    CAS  PubMed  PubMed Central  Google Scholar 

  • John-McKay M, Colman B (1997) Variation in the occurrence of external carbonic anhydrase among strains of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 33:988–990

    CAS  Google Scholar 

  • Johnston AM, Raven JA (1996) Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. Eur J Phycol 31:285–290

    Google Scholar 

  • Kaldenhoff R, Kai L, Uehlein N (2014) Aquaporins and membrane diffusion of CO2 in living organisms. Biochim Biophys Acta 1840:1592–1595

    CAS  PubMed  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microor ganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–559

    CAS  PubMed  Google Scholar 

  • Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and intracellular inorganic carbon pool in the blue-green algae Anabaena variabilis: response to external CO2 concentration. Planta 149:219–226

    CAS  PubMed  Google Scholar 

  • Kerfeld C, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75

    CAS  PubMed  Google Scholar 

  • Kevekordes K, Holland D, Jenkins S, Koss R, Roberts S, Raven JA, Scrimgeour CM, Shelly K, Stojkovic S, Beardall J (2006) Inorganic carbon acquisition by eight species of Caulerpa. Phycologia 45:442–449

    Google Scholar 

  • Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y (2016) Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci USA 113:9828–9833

    CAS  PubMed  Google Scholar 

  • Kinney JM, Axen SD, Kerfeld CA (2011) Comparative analysis of carboxysome shell proteins. Photosynth Res 109:21–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    PubMed  Google Scholar 

  • Korb RE, Saville PJ, Johnston AM, Raven JA (1997) Sources of inorganic carbon for photosynthesis by three species of marine diatoms. J Phycol 33:433–440

    CAS  Google Scholar 

  • Kroth PG (2015) The biodiversity of carbon assimilation. J Plant Physiol 172:76–81

    CAS  PubMed  Google Scholar 

  • Kübler JE, Raven JA (1994) Consequences of light limitation for carbon acquisition in three rhodophytes. Mar Ecol Prog Ser 110:203–209

    Google Scholar 

  • Kübler JE, Raven JA (1995) The interaction between inorganic carbon supply and light supply in Palmaria palmata (Rhodophyta). J Phycol 31:369–375

    Google Scholar 

  • Lapointe M, MacKenzie TDB, Morse D (2008) An external δ-carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusion-limited carbon acquisition. Plant Physiol 147:1427–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkum AWD, Davey PA, Kuo J, Ralph PJ, Raven JA (2017) Carbon-concentrating mechanisms in seagrasses. J Exp Bot 68:3773–3784

    CAS  PubMed  Google Scholar 

  • Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2)aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59: 1131–1138

    Google Scholar 

  • Leggat W, Badger MR, Yellowlees DC (1999) Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiol 121:1247–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Gao K, Beardall J (2012) Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. PLoS One 7(12):e51590. https://doi.org/10.1371/journal.pone.0051590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lines T, Beardall J (2018) Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: potential implications for species succession. J Phycol 54:599–607

    CAS  PubMed  Google Scholar 

  • Losh JL, Young JI, Morel FMM (2013) Rubisco is a small fraction of total protein in marine phytoplankton. New Phytol 198:52–58

    CAS  PubMed  Google Scholar 

  • Low-Décarie E, Fussmann GF, Bell G (2011) The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob Chang Biol 17:2525–2535

    Google Scholar 

  • Low-Décarie E, Bell G, Fussmann GF (2015) CO2 alters community composition and response to nutrient enrichment of freshwater phytoplankton. Oecologia 177:875–883

    PubMed  Google Scholar 

  • Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive English lake, Esthwaite Water. Cumbria Freshw Biol 35:609–622

    Google Scholar 

  • Maberly SC, Madsen TV (2002) Freshwater angiosperms carbon concentrating mechanisms: processes and patterns. Funct Plant Biol 29:393–405

    CAS  PubMed  Google Scholar 

  • Maberly SC, Ball LA, Raven JA, Sültemeyer D (2009) Inorganic carbon acquisition by chrysophytes. J Phycol 45:1057–1061

    Google Scholar 

  • Maberly SC, Courcelle C, Grobden R, Gontero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61:735–745

    CAS  PubMed  Google Scholar 

  • Machingura MC, Bajsa-Hirschel J, Laborde SM, Schwartzenburg JB, Mukherjee B, Mukherjee A, Pollock SV, Förster B, Price GD, Moroney JV (2017) Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. J Exp Bot 68:3879–3890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackinder LCM (2018) The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytol 217:54–61

    CAS  PubMed  Google Scholar 

  • Mackinder L, Chen C, Leib R, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC (2017) A spatial interactome reveals the protein organization of the algal CO2 concentrating mechanism. Cell 171:133–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y (2017) Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: a gateway to carbon metabolism. Philos Trans R Soc B 372:20160403

    Google Scholar 

  • McKay RML, Gibbs SP (1991) Composition and function of pyrenoids: cytochemical and immunocytochemical approaches. Can J Bot 69:1040–1052

    CAS  Google Scholar 

  • Meyer M, Griffiths H (2013) Origins and diversity of eukaryotic CO2-concentrating mechanisms: lessons for the future. J Exp Bot 64:769–786

    CAS  PubMed  Google Scholar 

  • Meyer MT, Genkov T, Skepper JN, Jouhet J, Mitchell MC, Spreitzer RJ, Griffiths H (2012) Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas. Proc Natl Acad Sci USA 109:19474–19479

    CAS  PubMed  Google Scholar 

  • Meyer MT, Whittaker C, Griffiths H (2017) The algal pyrenoid: key unanswered questions. J Exp Bot 68:3739–3749

    CAS  PubMed  Google Scholar 

  • Michels AK, Wedel N, Kroth PG (2005) Diatom plastids possess a phosphoribulokinase with an altered regulation and no oxidative pentose phosphate pathway. Plant Physiol 137:911–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell C, Beardall J (1996) Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biol 21:310–315

    Google Scholar 

  • Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer M (2017) Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. J Exp Bot 68:3891–3902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morel FMM, Cox EH, Kraepiel AML, Lane TW, Milligan AJ, Schaperdoth I, Reinfelder JR, Tortell PD (2002) Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Funct Plant Biol 29:301–308

    CAS  PubMed  Google Scholar 

  • Morita E, Abe T, Tsuzuki M, Fujiwara S, Sato N, Hirata A, Sonoike K, Nozaki H (1998) Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta). Planta 204:269–276

    CAS  PubMed  Google Scholar 

  • Morita E, Abe T, Tsuzuki M, Fujiwara S, Sato N, Hirata A, Sonoike K, Nozaki H (1999) Role of pyrenoids in the CO2- concentrating mechanism: comparative morphology, physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas (Volvocales). Planta 208:365–372

    Google Scholar 

  • Moroney JV, Chen ZY (1998) The role of the chloroplast in inorganic carbon uptake by eukaryotic algae. Can J Bot 76:1025–1034

    CAS  Google Scholar 

  • Morris I, Beardall J, Mukerji D (1978) The mechanisms of carbon fixation in phytoplankton. Mitt Internat Verein Limnol 21:174–183

    CAS  Google Scholar 

  • Munoz J, Merrett MJ (1989) Inorganic carbon transport in some marine eukaryotic microalgae. Planta 178:450–455

    CAS  PubMed  Google Scholar 

  • Mustardy L, Cunningham FX, Gantt E (1990) Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol 94:334–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Tanaka A, Matsuda Y (2013) SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc Natl Acad Sci USA 110:1767–1772

    CAS  PubMed  Google Scholar 

  • Ogawa T, Ogren WL (1985) Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. Photochem Photobiol 41:583–587

    CAS  Google Scholar 

  • Ogawa T, Miyano A, Inoue Y (1985) Photosystem-I-driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans. Biochim Biophys Acta 808:74–75

    Google Scholar 

  • Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H (2010) Expression of a low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22:3105–3311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc Natl Acad Sci U S A 96:13571–13576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist K, Sundblad L-G, Wingsle G, Samuelsson G (1990) Acclimation of photosynthetic light reactions during induction of inorganic carbon accumulation in the green alga Chlamydomonas reinhardtii. Plant Physiol 94:357–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel BN, Merrett MJ (1986) Regulation of carbonic anhydrase activity, inorganic carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta 169:81–86

    CAS  PubMed  Google Scholar 

  • Price GD, Maeda S, Omata T, Badger M (2002) Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct Plant Bio 29:131–149

    CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci U S A 101:18228–18233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BJ (2008) Advances in understanding the cyanobacterial CO2- concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    CAS  PubMed  Google Scholar 

  • Pronina NA, Borodin VV (1993) CO2-stress and CO2 concentrating mechanism: investigation by means of photosystem-deficient and carbonic anhydrase-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 28:515–522

    CAS  Google Scholar 

  • Pronina NA, Semenenko VE (1992) Pyrenoid role in CO2 concentration and fixation in microalga chloroplasts. Russ J Plant Physiol 73:723–730

    Google Scholar 

  • Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin–chlorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166:208–217

    CAS  Google Scholar 

  • Raven JA (1986) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, WKW L (eds) Photosynthetic picophytoplankton, Canadian bulletin of fisheries and aquatic sciences 214. Department of Fisheries and Oceans, Ottawa, pp 1–70

    Google Scholar 

  • Raven JA (1997a) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27:85–209

    CAS  Google Scholar 

  • Raven JA (1997b) Putting the C in Phycology. Eur J Phycol 32:319–333

    Google Scholar 

  • Raven JA (1997c) CO2 concentrating mechanisms: a role for thylakoid lumen acidification. Plant Cell Environ 20:147–154

    CAS  Google Scholar 

  • Raven JA (1999) Picophytoplankton. In: Round FE, Chapman DJ (eds) Progress in phycological research, volume 13. Biopress Ltd., Bristol, pp 33–106

    Google Scholar 

  • Raven JA (2009) Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat Microb Ecol 56:177–192

    Google Scholar 

  • Raven JA (2013a) Rubisco: still the most abundant protein of Earth? New Phytol 198:1–3

    CAS  PubMed  Google Scholar 

  • Raven JA (2013b) Half a century of pursuing the pervasive proton. Progr Bot 74:3–34

    CAS  Google Scholar 

  • Raven JA, Beardall J (2003) CO2 acquisition mechanisms in algae: Carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in the Algae. Kluwer Academic Publishers, Dordrecht, pp 225–244

    Google Scholar 

  • Raven JA, Beardall J (2016) The ins and outs of CO2. J Exp Bot 67:1–13

    CAS  PubMed  Google Scholar 

  • Raven JA, Colmer TD (2016) Life at the boundary: photosynthesis at the soil-liquid interface. A synthesis focusing on mosses. J Exp Bot 67:1613–1623

    CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M (2017) Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos Trans R Soc London B 372:20160400

    Google Scholar 

  • Raven JA, Hurd CJ (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–125

    CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J, Griffiths H (1982) Inorganic C sources for Lemanea, Cladophora and Ranunculus in a fast flowing stream: measurements of gas exchange and of carbon isotope ratio and their ecological significance. Oecologia 53:68–78

    PubMed  Google Scholar 

  • Raven JA, Ball L, Beardall J, Giordano M, Maberly SC (2005) Algae lacking CCMs. Can J Bot 83:879–890

    CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly S (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109:281–296

    CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc B 367:493–507

    CAS  Google Scholar 

  • Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms. Photosynth Res 121:111–124

    CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J, Quigg A (2019) Light-driven oxygen consumption in the water-water cycles and photorespiration, and light stimulated mitochondrial respiration (this volume)

    Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Sci 3:291–315

    Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    CAS  PubMed  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiskind JB, Bowes G (1991) The role of phosphoenol pyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88:2883–2887

    CAS  PubMed  Google Scholar 

  • Reiskind JB, Seaman PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol 87:686–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiskind JB, Madsen TV, Van Ginke LC, Bowes G (1997) Evidence that inducible C4-like photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220

    CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007a) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007b) Carbon acquisition by diatoms. Photosynth Res 93:79–88

    CAS  PubMed  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom- forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Google Scholar 

  • Rost B, Kranz SA, Richter K-U, Tortell PD (2007) Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton. Limnol Oceanogr Methods 5:328–337

    CAS  Google Scholar 

  • Rotatore C, Colman B (1990) Uptake of inorganic carbon by isolated chloroplasts of the unicellular green alga Chlorella ellipsoidea. Plant Physiol 93:1597–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotatore C, Colman B (1991) The localization of active carbon transport at the plasma membrane in Chlorella ellipsoidea. Can J Bot 69:1025–1031

    CAS  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    CAS  Google Scholar 

  • Sage RF, Christin P-A, Edwards EJ (2011) The C4 plant lineages of planet earth. J Exp Bot 62:3155–3169

    CAS  PubMed  Google Scholar 

  • Salvucci ME, Bowes G (1983) Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Plant Physiol 73:488–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaum CE, Collins S (2014) Plasticity predicts evolution in a marine alga. Proc R Soc Lond B 281:20141486

    Google Scholar 

  • Scott KM, Henn-Sax M, Harmer TL, Longo DL, Frome CH, Cavenaugh CM (2007) Kinetic isotope effect and biochemical characterisation of Form IA Rubisco from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnol Oceanogr 55:2199–2204

    Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance of bluegreens: the case for the importance of CO2 and pH. Verh Int Ver Theor Angew Limnol 24:38–54

    Google Scholar 

  • Shapiro J (1997) The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshw Biol 37:307–323

    Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. J Biol Chem 277:18658–18664

    CAS  PubMed  Google Scholar 

  • Shiraiwa Y, Danbara A, Yoke K (2004) Characterization of highly oxygen-sensitive photosynthesis in coccolithophorids. Jpn J Phycol 52(Supplement):87–94

    Google Scholar 

  • Sinetova MA, Kupiyanova EV, Mankelova AG, Allakhverdiev SI, Pronina NA (2012) Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. Biochim Biophys Acta 1817:1248–1255

    CAS  PubMed  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    CAS  PubMed  Google Scholar 

  • Smith-Harding TJ, Mitchell JG, Beardall J (2018) The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. J Phycol 53:1159–1170

    Google Scholar 

  • Spalding MH, Critchley C, Govindjee, Ogren WL (1984) Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynth Res 5:169–176

    CAS  PubMed  Google Scholar 

  • Stepien CC (2015) Impacts of geography, taxonomy and functional group on inorganic carbon use patterns in marine macrophytes. J Ecol 103:1372–1383

    CAS  Google Scholar 

  • Stojkovic S, Beardall J, Matear R (2013) CO2 concentrating mechanisms in three Southern Hemisphere strains of Emiliania huxleyi. J Phycol 49:670–679

    CAS  PubMed  Google Scholar 

  • Studer RA, Christin P-A, Williams MA, Orengo CA (2014) Stability-activity trade-offs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci USA 111:2223–2228

    CAS  PubMed  Google Scholar 

  • Sültemeyer DF, Fock HP, Canvin DT (1991) Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 and CO2 and characterization of active transport. Can J Bot 69:995–1002

    Google Scholar 

  • Tcherkez GGB, Farqhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci USA 103:7246–7725

    CAS  PubMed  Google Scholar 

  • Tchernov D, Silverman J, Luz B, Reinhold L, Kaplan A (2003) Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. Photosynth Res 77:95–103

    CAS  PubMed  Google Scholar 

  • Tortell P (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45:744–750

    CAS  Google Scholar 

  • Trimborn S, Lundholm N, Thoms S, Richter KU, Krock B, Hansen PJ, Rost B (2008) Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant 133:92–105

    CAS  PubMed  Google Scholar 

  • Tsekos I, Reiss HD, Orfanidid S, Orologas N (1996) Ultrastructure and supramolecular organization of photosynthetic membranes of some marine red algae. New Phytol 133:543–551

    Google Scholar 

  • Tsuji Y, Suzuki I, Shiraiwa Y (2009) Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): evidence for the predominant operation of the C3 cycle and the contribution of β-carboxylases to the active anaplerotic reaction. Plant Cell Physiol 50:318–329

    CAS  PubMed  Google Scholar 

  • Tsuji Y, Mahardika A, Matsuda Y (2017a) Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. J Exp Bot 68:3949–3958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji Y, Nakajima K, Matsuda Y (2017b) Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. J Exp Bot 68:3763–3772

    CAS  PubMed  Google Scholar 

  • Van de Waal DB, Verspagen JMH, Finke JF, Vournazou V, Immers AK, Kardinaal WEA, Tonk L, Becker S, Van Donk E, Visser PM, Huisman J (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450

    PubMed  PubMed Central  Google Scholar 

  • van Hunnik E, Amoroso G, Sültemeyer D (2002) Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedon minimum and Chlamydomonas noctigama. Planta 215:763–769

    PubMed  Google Scholar 

  • Villarejo A, Martinez F, del Pino Plumed M, Ramazanov Z (1996) The induction of the CO2 concentrating mechanism in a starch-less mutant of Chlamydomonas reinhardtii. Physiol Plant 98:798–802

    CAS  Google Scholar 

  • Villarejo A, Rolland N, Flor M, Sültemeyer D (2001) A new chloroplast envelope carbonic anhydrase activity is induced during acclimation to low inorganic carbon concentrations in Chlamydomonas reinhardtii. Planta 213:286–295

    CAS  PubMed  Google Scholar 

  • Wang Y, Stessman DJ, Spalding MH (2015) The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J 82:429–448

    PubMed  Google Scholar 

  • Whitney SM, Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Aust J Plant Physiol 25:131–138

    CAS  Google Scholar 

  • Whitney S, Shaw D, Yellowlees D (1995) Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the α-proteobacteria. Proc R Soc Lond B 259:271–275

    CAS  Google Scholar 

  • Whitney S, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer Nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    CAS  PubMed  Google Scholar 

  • Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015) Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 112:7315–7320

    CAS  PubMed  Google Scholar 

  • Young EB, Beardall J (2005) Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron and light availability. Can J Bot 83:917–928

    CAS  Google Scholar 

  • Young E, Beardall J, Giordano M (2001) Inorganic carbon acquisition by Dunaliella tertiolecta (Chlorophyta) involves external carbonic anhydrase and direct HCO3 utilization insensitive to the anion exchange inhibitor DIDS. Eur J Phycol 36:81–88

    Google Scholar 

  • Young JN, Heureux AM, Sharwood RE, Rickaby RE, Morel FM, Whitney SM (2016) Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J Exp Bot 67:3445–3456

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Beardall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beardall, J., Raven, J.A. (2020). Structural and Biochemical Features of Carbon Acquisition in Algae. In: Larkum, A., Grossman, A., Raven, J. (eds) Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-33397-3_7

Download citation

Publish with us

Policies and ethics