Skip to main content
Log in

Development of TRAP (Target Region Amplification Polymorphism) as New Tool for Molecular Genetic Analysis in Cassava

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) lacks molecular studies for use in breeding and germplasm bank maintenance. This work aimed to develop and validate TRAP (target region amplification polymorphism) markers for cassava and evaluate their potential for structuring the genetic diversity of this species. Preliminary analyses with 396 combinations found 64 % of combinations with a good amplification pattern and polymorphism. The 69 most polymorphic TRAP combinations were used to characterize 46 cassava genotypes, from which 606 alleles (range 3 to 18 with a mean of 8.8 alleles per combination) were identified. The polymorphic information content (PIC) ranged from 0.03 to 0.38 (average 0.23), while 31 combinations showed a PIC >0.25. The resolving power (Rp) parameter ranged from 0.10 to 6.30 (average 3.21). The primers that were related to starch and carotenoid biosynthesis, cyanogenic compounds, post-harvest physiological deterioration, root formation, and defense responses were the most polymorphic (>70 % of polymorphic fragments, PIC > 0.25, and Rp > 3.21). A total of 37 private alleles were identified in 20 accessions. Bayesian clustering as implemented in STRUCTURE revealed the presence of two major clusters (K = 2) and four subclusters (K = 4). The group differentiation based on the molecular variance analysis (AMOVA) showed that most of the genetic variation is within groups but with significant differences between groups. Therefore, TRAP primers have a high polymorphism for use as a molecular tool in cassava, in addition to the association with genetic regions that may increase the chances of obtaining functional markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiemnaka P, Wongkaew A, Chanthaworn J, Nagashima SK, Boonma S, Authapun J, Jenweerawat S, Kongsila P, Kittipadakul P, Nakasathien S, Sreewongchai T, Wannarat W, Vichukit V, Lopez-Lavalle LAB, Ceballos H, Rojanaridpiched C, Phumichai C (2012) Molecular characterization of a spontaneous waxy starch mutation in cassava. Crop Sci 52:2121–2130

    Article  CAS  Google Scholar 

  • Akinbo O, Gedil M, Ekpo EJA, Oladele J, Dixon AGO (2007) Detection of RAPD markers-linked to resistance to cassava anthracnose disease. Afr J Biotechnol 6:677–682

    CAS  Google Scholar 

  • Alves-Pereira A, Peroni N, Abreu AG, Gribel R, Clement CR (2011) Genetic structure of traditional varieties of bitter manioc in three soils in Central Amazonia. Genetica 139:1259–1271

    Article  PubMed  Google Scholar 

  • Alwala S, Kimbeng CA, Gravois KA, Bischoff KP (2006a) TRAP, a new tool for sugarcane breeding: comparison with AFLP and coefficient of parentage. Sugar Cane Intern 26:62–86

    Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006b) Target Region Amplification Polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448–455

    Article  CAS  Google Scholar 

  • Asare PA, Galyuon IKA, Sarfo JK, Tetteh JP (2011) Morphological and molecular based diversity studies of some cassava (Manihot esculenta crantz) germplasm in Ghana. Afr J Biotechnol 10:13900–13908

    Google Scholar 

  • Barakat MN, Al-Doss AA, Elshafei AA, Ghazy AI, Moustafa KA (2013) Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits. Aust J Crop Sci 7:104–111

    Google Scholar 

  • Beeching JR, Marmey P, Gavalda M-C, Noirot M, Hayso HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava (Manihot esculenta Crantz) germplasm using molecular markers. Ann Bot 72:515–520

    Article  CAS  Google Scholar 

  • Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker-assisted selection in common beans and cassava. In: Guimarães E, Ruane J, Scherf B, Sonnino A, Dargie A (eds) Marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 81–116

    Google Scholar 

  • Chavarriaga-Aguirre P, Halsey M (2005) Cassava (Manihot esculenta Crantz): reproductive biology and practices for confinement of experimental field trials. Report prepared for the Program for Biosafety Systems. Program for Biosafety Systems, Washington

    Google Scholar 

  • Chen J, Hu J, Vick BA, Jan CC (2006) Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet 113:122–127

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Xia Z, Fu Y, Lu C, Wang W (2010) Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Plant Mol Biol Report 28:676–683

    Article  CAS  Google Scholar 

  • Colombo C, Second G, Charrier A (2000) Diversity within American cassava germplasm based on RAPD markers. Genet Mol Biol 23:189–199

    Article  Google Scholar 

  • Deng Z, Goktepe F, Harbaugh BK (2007) Assessment of genetic diversity and relationships among Caladium cultivars and species using molecular markers. J Am Soc Hortic Sci 132:219–229

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elias M, Panaud O, Robert T (2000) Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity 85:219–230

    Article  PubMed  CAS  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando ME (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAO - Food and Agriculture Organization of the United Nations. FAOSTAT database. Disponível em http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E. Acesso em: 31 Junho 2014

  • Ferguson ME, Hearne SJ, Close TJ, Wanamaker S, Moskal WA, Town CD, de Young J, Marri PR, Rabbi IY, de Villiers EP (2012) Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 124:685–695

    Article  PubMed  CAS  Google Scholar 

  • Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fregene M, Angel F, Gomez R, Rodriguez F, Chavarriaga P, Roca W, Tohme J, Bonierbale M (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441

    Article  CAS  Google Scholar 

  • Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of African cassava (Manihot esculenta Crantz.) germplasm resistant to the Cassava Mosaic Disease (CMD). Theor Appl Genet 100:678–685

    Article  CAS  Google Scholar 

  • Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Ago D, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Gibbons A (1990) New view of early Amazonia. Science 248:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Gowda M, Zhao Y, Würschum T, Longin CFH, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant J-P, Mette MF, Reif JC (2014) Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 112:552–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazekamp T (2002) The potential role of passport data in the conservation and use of plant genetic resources. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson MT (eds) Managing Plant Genetic Diversity. IPGRI, Rome, pp 185–194

    Google Scholar 

  • Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Report 2:289–294

    Article  Google Scholar 

  • Hu J, Beiquan M, Vick BA (2007) Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol 54:1667–1674

    Article  CAS  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Hurtado P, Olsen KM, Buitrago C, Ospina C, Marin J, Duque M, De Vicente C, Wongtiem P, Wenzel P, Killian A, Adeleke M, Fregene M (2008) Comparison of simple sequence repeat (SSR) and diversity array technology (DArT) markers for assessing genetic diversity in cassava (Manihot esculenta Crantz). Plant Genet Res 6:208–214

    Article  Google Scholar 

  • Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breed 23:669–684

    Article  CAS  Google Scholar 

  • Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K (2010) Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breed 129:112–115

    Article  CAS  Google Scholar 

  • Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot DA, Triwitayakorn K, Tangphatsornruang S (2011) Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Mol Breed 27:67–75

    Article  Google Scholar 

  • Kwon SJ, Hu J, Coyne CJ (2010) Genetic diversity and relationship among Faba bean (Vicia faba L.) germplasm entries as revealed by TRAP markers. Plant Genet Res 8:204–213

    Article  CAS  Google Scholar 

  • Lado B, Matus I, Rodriquez A, Inostroza L, Poland J, Belzile F, del Pozo A, Quincke M, von Zitzewitz, J (2013) Increased genomic prediction accuracy through spatial adjustment of field trial data. G3 3:2105–2114. doi:10.1534/g3.113.007807

  • Laurentin HE, Karlovsky P (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet 7:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, Kim R, Liu L, Hernandez A, Dixon AG, Ingelbrecht IL (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618

    Article  PubMed  CAS  Google Scholar 

  • Lopez C, Jorge V, Piegu B, Mba C, Cortes D, Restrepo S, Soto M, Laudié M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541–554

    Article  PubMed  Google Scholar 

  • Luo C, Zhang F, Zhang QL, Guo DY, Luo ZR (2013) Characterization and comparison of EST-SSR and TRAP markers for genetic analysis of the Japanese persimmon Diospyros kaki. Genet Mol Res 12:2841–2851

    PubMed  CAS  Google Scholar 

  • Marmey P, Beeching J, Hamon S, Charrier A (1993) Evaluation of cassava (Manihot esculenta Crantz.) germplasm using RAPD markers. Euphytica 74:203–209

    CAS  Google Scholar 

  • Marsjan PA, Oldenbroek JK (2007) Molecular markers, a tool for exploring genetic diversity. In: The state of the world’s animal genetic resources for food and agriculture. FAO Research report, Rome, 359–379

  • Menzo V, Giancaspro A, Giove S, Nigro D, Zacheo S, Colasuonno P, Marcotuli I, Incerti O, Blanco A, Gadaleta A (2013) TRAP molecular markers as a system for saturation of the genetic map of durum wheat. Euphytica 194:151–160

    Article  CAS  Google Scholar 

  • Mezette TF, Blumer CG, Veasey EA (2013) Morphological and molecular diversity among cassava genotypes. Pesq Agrop Brasileira 48:510–518

    Article  Google Scholar 

  • Moyib OK, Mkumbira J, Odunola AO, Dixon AG (2012) Gene diversity and identification of putative hybridizing parents for root rot resistance in cassava using simple sequence repeats. Int J Biotechnol Mol Biol Res 4:47–56

    Article  Google Scholar 

  • Mühlen GS, Martins PS, Ando A (2000) Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA. Sci Agric 57:319–328

    Article  Google Scholar 

  • Olsen KM (2004) SNPs, SSRs and inferences on cassava’s origin. Plant Mol Biol 6:517–526

    Article  CAS  Google Scholar 

  • Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a Southern Amazonian origin of domestication. Am J Bot 88:131–142

    Article  PubMed  Google Scholar 

  • Paliwal R, Singh R, Singh AK, Kumar S, Kumar A, Majumdar RS (2013) Molecular characterization of Giloe (Tinospora cordifolia Willd. Miers ex Hook. F. and Thoms.) accessions using Start Codon Targeted (SCoT) markers. Int J Med Arom Plants 3:413–422

    Google Scholar 

  • Pariyo A, Tukamuhabwa P, Baguma Y, Kawuki RS, Alicai T, Gibson P, Kanju E, Wanjala BW, Harvey J, Nzuki I, Rabbi IY, Ferguson M (2013) Simple sequence repeat (SSR) diversity of cassava in South, East and Central Africa in relation to resistance to cassava brown streak disease. Afr J Biotechnol 12:4453–4464

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-de-Castro AM, Vilanova S, Cañizares J, Pascual L, Blanca JM, Díez MJ, Prohens J, Picó B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Pluthero FG (1993) Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res 21:4850–4851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rabbi IY, Kulembeka HP, Masumba E, Marri PR, Ferguson M (2012) An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 125:329–342

    Article  PubMed  CAS  Google Scholar 

  • Raji AA, Anderson JV, Kolade OA, Ugwu CD, Dixon AGO, Ingelbrecht IL (2009a) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:1–11

    Article  CAS  Google Scholar 

  • Raji AAJ, Fawole I, Gedill M, Dixon AGO (2009b) Genetic differentiation analysis of African cassava (Manihot esculenta) landraces and elite germplasm using amplified fragment length polymorphism and simple sequence repeat markers. Ann Appl Biol 155:187–199

    Article  Google Scholar 

  • Ramanatha R, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult 68:1–19

    Article  Google Scholar 

  • Roa AC, Maya MM, Duque MC, Tohme J, Allem A, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:745–750

    Article  Google Scholar 

  • Rodriguez-Ramilo ST, Toro MA, Caballero A, Fernandez J (2007) The accuracy of a heritability estimator using molecular information. Conserv Genet 8:1189–1198

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. P Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sakurai T, Plata G, Rodriguez-Zapata F, Seki M, Salcedo A, Atsushi T, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schreier AD, Mahardja B, May B (2012) Hierarchical patterns of population structure in the endangered Fraser River white sturgeon (Acipenser transmontanus) and implications for conservation. Can J Fish Aquat Sci 69:1968–1980

    Article  Google Scholar 

  • Silva RM, Bandel G, Martins OS (2003) Mating system in an experimental garden composed of cassava (Manihot esculenta Crantz) ethnovarieties. Euphytica 134:127–135

    Article  Google Scholar 

  • Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S, Shirasawa K, Isobe S, Lightfoot DA, Tangphatsornruang S, Triwitayakorn K (2011) SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 122:1161–1170

    Article  PubMed  Google Scholar 

  • Suman A, Ali K, Arro J, Parco AS, Kimbeng CA, Baisakh N (2012) Molecular diversity among members of the saccharum complex assessed using TRAP markers based on lignin-related. Genes Bio Energy Res 5:197–205

    CAS  Google Scholar 

  • Twito T, Weigend S, Blum S, Granevitze Z, Feldman M, Perl-Treves R, Lavi U, Hillel J (2007) Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet Genome Res 117:319–326

    Article  PubMed  CAS  Google Scholar 

  • Vieira EA, Fialho JF, Faleiro FG, Bellon G, Fonseca KG, Carvalho LJCB, Silva MS (2010) Caracterização molecular e variabilidade genética de acessos elite de mandioca para fins industriais. Cienc Rural 40:2467–2471

    Article  CAS  Google Scholar 

  • Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li L, Wu R, Pang X (2014) High-level genetic diversity and complex population structure of siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS ONE 9:2

    Google Scholar 

  • Weir BS (1990) Genetic data analysis: methods for discrete population genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, de Vicente MC, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of Cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Zacarias A, Botha A, Labuschagne M, Benesi I (2004) Characterisation and genetic distance analysis of cassava (Manihot esculenta Crantz.) germplasm from Mozambique using RAPD fingerprinting. Euphytica 138:49–53

    Article  CAS  Google Scholar 

  • Zhang N, Yuan S, Yang W, Liu D (2010) Identification of Lr24 with targeted region amplified polymorphism (TRAP) analysis in wheat. Front Agric China 4:18–23

    Article  Google Scholar 

  • Zou M, Xia Z, Ling P, Zhang Y, Chen X, Wei Z, Bo W, Wang W (2011) Mining EST-derived SSR markers to assess genetic diversity in cassava (Manihot esculenta Crantz). Plant Mol Biol 29:961–971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial assistance and scholarship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Oliveira.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmo, C.D., Santos, D.B., Alves, L.B. et al. Development of TRAP (Target Region Amplification Polymorphism) as New Tool for Molecular Genetic Analysis in Cassava. Plant Mol Biol Rep 33, 1953–1966 (2015). https://doi.org/10.1007/s11105-015-0887-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0887-5

Keywords

Navigation