Skip to main content
Log in

Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The goal of this study was to investigate the structure and functional potential of microbial communities associated with healthy and diseased tomato rhizospheres.

Methods

Composition changes in the bacterial communities inhabiting the rhizospheric soil and roots of tomato plants were detected using 454 pyrosequencing. Microbial functional diversity was investigated with BIOLOG technology.

Results

There were significant shifts in the microbial composition of diseased samples compared with healthy samples, which had the highest bacterial diversity. The predominant phylum in both diseased and healthy samples was Proteobacteria, which accounted for 35.7–97.4 % of species. The class Gammaproteobacteria was more abundant in healthy than in diseased samples, while the Alphaproteobacteria and Betaproteobacteria were more abundant in diseased samples. The proportions of pathogenic Ralstonia solanacearum and Actinobacteria species were also elevated in diseased samples. The proportions of the various bacterial populations showed a similar trend both in rhizosphere soil and plant roots in diseased versus disease-free samples, indicating that pathogen infection altered the composition of bacterial communities in both plant and soil samples. In terms of microbial activity, functional diversity was suppressed in diseased soil samples. Soil enzyme activity, including urease, alkaline phosphatase and catalase activity, also declined.

Conclusions

This is the first report that provides evidence that R. solanacearum infection elicits shifts in the composition and functional potential of microbial communities in a continuous-cropping tomato operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47

    Article  Google Scholar 

  • Ajwa HA, Dell CJ, Rice CW (1999) Changes in enzyme activities and microbial biomass of tall grass prairie soil as related to burning and nitrogen fertilization. Soil Biol Biochem 31:769–777

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial foot exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Loren V, van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel P, Reinhardt R, Schmelzer E, Peplies J, Gloeckner F-O, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Caporaso G, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cardon Z, Whitbeck J (2007) The rhizosphere: an ecological perspective, 1st edn. Academic, San Diego, p 232pp

    Google Scholar 

  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Conteras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am Potato J 66:315–332

    Article  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A 92:4197–4201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microbiol 6:1041–1045

    Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  PubMed  Google Scholar 

  • Diaz PI, Dupuy AK, Abusleme L, Reese B, Obergfell C, Choquette L, Dongari-Bagtzoglou A, Peterson DE, Terzi E, Strausbaugh LD (2012) Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol Oral Microbiol 27:182–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dick RP (1994) Soil enzyme activities as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA special publication no. 35. Soil Science Society of America Inc, Madison, pp 107–124

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105:17994–17999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  • French E, Gutarra L, Aley P, Elphinstone J (1995) Culture media for Pseudomonas solanacearum isolation, identification and maintenance. Fitopatol 30:126–130

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glenn TC (2011) Field guide to next generation DNA sequencers. Mol Ecol Resour 15:759–769

    Article  Google Scholar 

  • Guan SY (1986) Soil enzyme and research methods. China Agriculture Press, Beijing, pp 123–339

    Google Scholar 

  • Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhause ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine disease climate links and anthropomorphic factors. Science 285:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Hayward AC (1995) Pseudomonas solanacearum. In: Singh US, Singh RP, Kohmoto K (eds) Pathogenesis and host specificity in plant disease: histopathological, biochemical, genetic and molecular bases, vol 1. Elsevier, Tarrytown, pp 139–151

    Google Scholar 

  • Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG (2011) Bacterial diversity in solenopsis invicta and solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61:821–831

    Article  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and l-tryptophan in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Kandeler E, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306

    Article  CAS  Google Scholar 

  • Kang YG, Chung YH, Yu YH (2004) Relationship between the population of Ralstonia solanacearum in soil and the incidence of bacterial wilt in the naturally infested tobacco fields. Plant Pathol J 20:289–292

    Article  Google Scholar 

  • Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckman JS, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–13

    Google Scholar 

  • Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation composition and plant role of HLB in microbial communities species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol 63:372–382

    Article  CAS  PubMed  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230

    Article  PubMed  Google Scholar 

  • Lagomarsino A, Moscatelli MC, Di Tizio A, Mancinelli R, Grego S, Marinari S (2009) Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. Ecol Indic 9:518–527

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Herrera-Paredes S, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrekston A, Kunin V, Glavina del Rio T, Edgar R, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Yang CH, Lieberei R (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • McSpadden Gardener BB, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E, Bonaterra A, Badosa E, Frances J, Alemany J, Llorente I, Moragrega C (2002) Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol 5:169–175

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin A (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosario K, Iverson SL, Henderson DA, Chartrand S, McKeon C, Glenn EP, Maier RM (2007) Bacterial community changes during plant establishment at the San Pedro River mine tailings site. J Environ Qual 36:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JR, Bottomley PS (eds) Methods of soil analysis. Part 2: microbiological and biochemical properties. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  • Tian L, Dell E, Shi W (2010) Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization. Appl Soil Ecol 46:426–435

    Article  Google Scholar 

  • Trivedi P, Duan Y, Wang N (2010) Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Appl Environ Microbiol 76:3427–3436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trivedi P, Spann TM, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol 62:324–336

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou JZ, Wang N (2012) Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J 6:363–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976

    Article  CAS  PubMed  Google Scholar 

  • Xia WW, Zhang CX, Zeng XW, Feng YZ, Weng JH, Lin XG, Zhu JG, Xiong ZQ, Xu J, Cai ZC, Jia ZJ (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang CH, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97:2681–2690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yergeau E, Schoondermark-Stolk SA, Brodie EL, Dejean S, Desantis TZ, Goncalves O, Piceno YM, Andersen GL, Kowalchuk GA (2009) Environmental microarray analyses of Antarctic soil microbial communities. ISME J 3:340–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by national natural science foundation of China (41201241), China postdoctoral science foundation (2013 M531412), and innovation key program of the Chinese academy of sciences (KSCX-EW-B-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hua Dong.

Additional information

Responsible Editor: Simon Jeffery.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JG., Ren, GD., Jia, ZJ. et al. Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant Soil 380, 337–347 (2014). https://doi.org/10.1007/s11104-014-2097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2097-6

Keywords

Navigation