Skip to main content
Log in

The expression of iron homeostasis-related genes during rice germination

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination.

Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bashir K, Inoue H, Nagasak S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of Deoxymugineic acid synthase genes in graminaceous plants. J Biol Chem 281(43):32395–32402

    Article  PubMed  CAS  Google Scholar 

  • Bashir K, Nishizawa NK (2006) Deoxymugineic acid synthase; a gene important for Fe-acquisition and homeostasis. Plant Signal Behav 1(6):290–292

    Google Scholar 

  • Benes I, Schreiber K, Ripperger H, Kircheiss A (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia 39:261–262

    Article  CAS  Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278(27):24697–24704

    Article  PubMed  CAS  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53(374):1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2002) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347 Pt 3:749–755

    Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409(6818):346–349

    Article  PubMed  CAS  Google Scholar 

  • Danjo T, Inosaka M (1960) On the tissue of scutellum in relation to the nutrient absorption by endosperm in rice and oat seeds. Proc Crop Sci Soc Japan 29:100 (J)

    Google Scholar 

  • Elorza A, Roschzttardtz H, Gomez I, Mouras A, Holuigue L, Araya A, Jordana X (2006) A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination. Plant Cell Physiol 47(1):14–21

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93(11):5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465(1–2):190–198

    PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Nishizawa NK, Romheld V, Marschner H, Mori S (1996) Absence of nicotinamine synthase activity in the tomato mutant ‘chloronerva. J Plant Nutr 19:1235–1239

    CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119(2):471–480

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25(2):159–167

    Article  PubMed  CAS  Google Scholar 

  • Hoshikawa K (1973) Theory and practices of raising paddy rice seedlings for mechanized transplanting. 6. Agri Hort 48:1253–1254

    Google Scholar 

  • Hoshikawa K (1975) Anatomical illustrations on the rice growth (Kaibo zusetsu Ine no seicho). Nobunkyo, Tokyo. Japan

    Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36(3):366–381

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56(422):3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S and Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J (in press)

  • Jefferson RA, Kavanagh TA and Bevan NM (1987) GUS fusion: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J: 63901–63907

  • Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35(3):295–304

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Kamei S, Matsuda Y, Ando R, Kondo S, Ishizawa A, Alam S (2001) Concentrations of iron and phytosiderophores in xylem sap of iron-deficient barley plants. Soil Sci Plant Nutr 47(2):265–272

    CAS  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46(11):1809–18

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the Vacuolar Membrane Transporter VIT1. Science Epub ahead of print

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212(5–6):864–871

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36(6):780–793

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56(415):1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

    Article  PubMed  CAS  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G ,Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24(23):4041–4051

    Article  PubMed  CAS  Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44(5):769–782

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96(12):7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Nishizawa NK (1987) Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol 28:1081–1092

    CAS  Google Scholar 

  • Mori S, Nishizawa NK, Hayashi H, Chino M, Yoshimura E, Ishihara J (1991) Why are young rice plants highly susceptible to iron deficiency ? Plant Soil 130:143–156

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakanishi H, Okumura N, Umehara Y, Nishizawa NK, Chino M, Mori S (1993) Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare. Plant Cell Physiol 34(3):401–410

    PubMed  CAS  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44(2):199–207

    Article  PubMed  CAS  Google Scholar 

  • Noda A, Hayashi Z (1957) Studies on the coleorhizae of cereals. Proc Crop Sci Soc Japan 29:24–26

    Google Scholar 

  • Noma M, Noguchi M (1976) Occurrence of nicotianamine in higher plants. Phytochemistry 15:1701–1702

    Article  CAS  Google Scholar 

  • Noma M, Noguchi M, Tamaki E (1971) A new amino acid, nicotianamine, from tobacco leaves. Tetrahedron Lett 22:2017–2020

    Article  Google Scholar 

  • Nomoto K, Yoshioka H, Arima M, Fushiya S, Takagi S, Takemoto T (1981) Structure of 2′-deoxymugineic acid, a novel amino acid possessing an iron chelating activity. Chimia 35:249–250

    CAS  Google Scholar 

  • Ogawa M, Tanaka K, Kasai Z (1977) Note on the phytin-containing particles isolated from rice scutellum. Cereal Chem 54:1029–1034

    CAS  Google Scholar 

  • Oguchi K, Tanaka N, Komatsu S, Akao S (2004) Characterization of NADPH-dependent oxidoreductase induced by auxin in rice. Physiol Plant 121(1):124–131

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T, Chino M, Mori S (1994) A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol Biol 25(4):705–719

    Article  PubMed  CAS  Google Scholar 

  • Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersion esculentum Mill.):Nicotianamine-stimulated copper transport in the xylem. J Exp Bot 294:41–47

    Article  Google Scholar 

  • Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213(6):967–976

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397(6721):694–697

    Article  PubMed  CAS  Google Scholar 

  • Rudolph A, Becker R, Scholz G, Prochazka Z, Toman J, Macek T, Herout V (1985) The occurrence of the amino acid nicotianmine in plants and microorganisms: a reinvestigation. Biochem Physiol Pflanz 180:557–563

    CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279(10):9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S (1990) Biosynthesis of phytosiderophores. In vitro biosynthesis of 2′-deoxymugineic acid from l-methionine and nicotianamine. Plant Physiol 93:1497–1503

    PubMed  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529

    Article  CAS  Google Scholar 

  • Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-tomeasure for complexation of metal micronutrients in plants. Biometals 9:84–90

    Article  CAS  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washings. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 45:993–1002

    Google Scholar 

  • Takagi S, Kamei S, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469

    CAS  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol 121(3):947–956

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15(6):1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Takaiwa F, Kikuchi S, Oono K (1987) A rice glutelin family-A major type of glutelin mRNAs can be devised into two classes. Mol Gen Genet 208:15–22

    Article  CAS  Google Scholar 

  • Takizawa R, Nisizawa NK, Nakanishi H, Mori S (1996) Effect of iron deficiency on s-adenosyl-metionine synthetase in barley roots. J Plant Nutr 19:1189–1200

    Article  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97(9):4991–4996

    Article  PubMed  CAS  Google Scholar 

  • von Wirén N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119(3):1107–1114

    Article  Google Scholar 

  • Yamauchi M (1997) Stimulation of ethylene synthesis from husks of rice seedling by ferrous iron. In: JIRCAS research highlight. Japan International Rresearch Center for Agricultural Sciences. Available via DIALOG. http://ss.jircas.affrc.go.jp of subordinate document. Cited 9 Jun 2006

Download references

Acknowledgements

We thank Dr Takanori Kobayashi for reading manuscript and helpful discussions, and Dr Yoshiaki Nagamura of the Rice Genome Project and the NIAS DNA Bank (National Institute of Agrobiological Sciences, Tsukuba, Japan) for support with the 22K oligo array analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko K. Nishizawa.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM 1 (XLS 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozoye, T., Inoue, H., Takahashi, M. et al. The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol 64, 35–47 (2007). https://doi.org/10.1007/s11103-007-9132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9132-4

Keywords

Navigation