Skip to main content
Log in

The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A dwarf mutant, dw arf 2 (dw2), was isolated from sunflower (Helianthus annuus). The most obvious alterations of dw2 plants were the lack of stem growth, reduced size of leaves, petioles and flower organs, retarded flower development. Pollen and ovules were produced but the filaments failed to extrude the anthers from the corolla. The dw2 phenotype was mainly because of reduced cell size. In dw2 leaves, the dark-green color was not so much due to higher pigment content, but was correlated with a changed leaf morphology. The mutant responded to the application of bioactive gibberellins (GAs). The levels of ent-7α-hydroxykaurenoic acid, GA19, GA20 and GA1 in dw2 seedlings were severely decreased relative to those in its wild type (WT). ent-Kaurenoic acid was actively converted to ent-7α-hydroxykaurenoic acid in WT plants but quite poorly in dw2 plants. All together these data suggested that the dw2 mutation severely reduced the flux through the biosynthetic pathway leading to active GAs by hampering the conversion of ent-kaurenoic acid to GA12. Two ent-kaurenoic acid oxidase (KAO) genes were identified. HaKAO1 was expressed everywhere in sunflower organs, while HaKAO2 was mainly expressed in roots. We demonstrated that a DNA deletion in HaKAO1 of dw2 generated aberrant mRNA-splicing, causing a premature stop codon in the amino acid sequence. In dw2 calli, Agrobacterium-mediated transfer of WT HaKAO1 cDNA restored the WT endogenous levels of GAs. In segregating BC1 progeny, the deletion co-segregated with the dwarf phenotype. The deletion was generated near to a breakpoint of a more complex chromosome rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboura A, Labrune P, Perreaux F, Poncet V, Brisset S, Foix-l’Helias, Tachdjian G (2003) Deletion in the ABL gene resulting from a meiotic recombination of a maternal (3;22;9)(q22;q12;q34.1) translocation. J Med Genet 40: e6. doi:10.1136/jmg.40.1.e6

  • Ait-Ali T, Swain SM, Reid JB, Sun TP, Kamiya Y (1997) The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J 11:443–454

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Atkins WM, Sligar SG (1988) The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis. J Biol Chem 263:18842–18849

    PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL (2002) The pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Bishop GJ, Koncz C (2002) Brassinosteroids and plant steroid hormone signalling. Plant Cell 14:S97–S110

    PubMed  CAS  Google Scholar 

  • Brown JWS (1996) Arabidopsis intron mutations and pre-mRNA splicing. Plant J 10:771–780

    Article  PubMed  CAS  Google Scholar 

  • Buluŝka F, Busti E, Dolfini S, Gavazzi G, Volkmann D (2001) Lilliputian mutant of maize lacks cell elongation and shows defects in organization of actin cytoskeleton. Dev Biol 236:478–491

    Article  Google Scholar 

  • Busov VB, Meilan M, Pearce DW, Ma C, Rood SB, Strass SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Carzoli FG, Michelotti V, Fambrini M, Salvini M, Pugliesi C (2009) Molecular cloning and organ-specific expression of two gibberellin 20-oxidase genes of Helianthus annuus. Plant Mol Biol Rep 27:144–152

    Article  CAS  Google Scholar 

  • Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, Vitacolonna N, Sarri V, Cattonaro F, Ceccarelli M, Cionini PG, Morgante M (2010) Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 120:491–508

    Article  PubMed  CAS  Google Scholar 

  • Cecconi F, Gaetani M, Lenzi C, Durante M (2002) The sunflower dwarf mutant dw1: effects of gibberellic acid treatments. Helia 36:161–166

    Article  Google Scholar 

  • Chandler PM, Robertson M (1999) Gibberellin dose response curves and the characterization of dwarf mutants of barley. Plant Physiol 120:623–632

    Article  PubMed  CAS  Google Scholar 

  • Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007) Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19:3876–3888

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Dilkes BP, Fujika S, Takatsuto S, Sakuray A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxilation steps in brassinosteroid biosynthesis. Plant Cell 10:231–244

    Article  PubMed  CAS  Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  PubMed  CAS  Google Scholar 

  • Darley CP, Forrester AM, MacQueen-Mason SJ (2001) The molecular basis of plant cell wall extension. Plant Mol Biol 47:179–195

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131:335–344

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Smith JJ, Helliwell CA, Poole AT, Reid JB (2004) The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Swain SM, Reid JB (2005) Regulation of the early GA biosynthesis pathway in pea. Planta 222:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Reid JB, Helliwell CA (2006) Cytochromes P450 in gibberellin biosynthesis. Phytochem Rev 5:405–419

    Article  CAS  Google Scholar 

  • Durst F, O’Keefe DP (1995) Plant cytochromes P450: an overview. In: Durst F, O’Keefe DP (eds) Drug metabolism and drug interactions, vol 12. Freund Publishing House Ltd, UK, pp 171–187

    Google Scholar 

  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  PubMed  CAS  Google Scholar 

  • Fambrini M, Castagna A, Dalla Vecchia F, Degl’Innocenti E, Ranieri A, Vernieri P, Pardossi A, Guidi L, Rascio N, Pugliesi C (2004) Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci 167:79–89

    Article  CAS  Google Scholar 

  • Fambrini M, Bonsignori E, Rapparini F, Cionini G, Michelotti V, Bertini D, Baraldi R, Pugliesi C (2006) stem fasciated, a recessive mutation in sunflower (Helianthus annuus), alters plant morphology and auxin level. Ann Bot 98:715–730

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fleet CM, Sun T-p (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Op Plant Biol 8:77–85

    Article  CAS  Google Scholar 

  • Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, Kamiya Y, Sun T-p (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839

    Article  PubMed  CAS  Google Scholar 

  • Gordon AJ, Halliday JA (1995) Inversions with deletions and duplications. Genetics 140:411–414

    PubMed  CAS  Google Scholar 

  • Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J (1995) Structure and function of cytochrome-P450: a comparative analysis of 3 crystal structures. Structure 3:41–62

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (1999) Recent advances in gibberellin biosynthesis. J Exp Bot 50:553–563

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: a new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Olive MR, Gebbie L, Forster R, Peacock WJ, Dennis ES (2000) Isolation of an ent-kaurene oxidase cDNA from Cucurbita maxima. Aust J Plant Physiol 27:1141–1149

    CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Hutchison M, Gaskin P, MacMillan J, Phynney BO (1988) Gibberellins in seeds of Helianthus annuus. Phytochemistry 27:2695–2701

    Article  CAS  Google Scholar 

  • Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci USA 86:7823–7827

    Article  PubMed  CAS  Google Scholar 

  • Jambhulkar SJ (2002) An extreme dwarf mutant in sunflower. Curr Sci 83:116

    Google Scholar 

  • Kalb VF, Loper JC (1988) Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity. Proc Natl Acad Sci USA 85:7221–7225

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Bosma TDG, Hanhart CJ, van der Veen JH, Zeevaart JAD (1990) The isolation and characterization of gibberellin-deficient mutants in tomato. Theor Appl Genet 80:852–857

    Article  Google Scholar 

  • Kumar A, Becker LA, Depinet TW, Haren JM, Kurtz CL, Robin NH, Cassidy SB, Wolff DJ, Schwartz S (1998) Molecular characterization and delineation of subtle deletion in de novo “balanced” chromosomal rearrangements. Hum Genet 103:173–178

    PubMed  CAS  Google Scholar 

  • Lee DJ, Zeevaart JA (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138:243–254

    Article  PubMed  CAS  Google Scholar 

  • Lister C, Martin C (1989) Molecular analysis of a transposon-induced deletion of the nivea locus in Antirrhinum majus. Genetics 123:417–425

    PubMed  CAS  Google Scholar 

  • Lobello G, Fambrini M, Baraldi R, Lercari B, Pugliesi C (2000) Hormonal influence on photocontrol of the protandry in the genus Helianthus. J Exp Bot 51:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Manavella PA, Chan RL (2009) Transient transformation of sunflower leaf discs via an Agrobacterium-mediated method: applications for gene expression and silencing studies. Nature Prot 4:1699–1707

    Article  CAS  Google Scholar 

  • Margis-Pinheiro M, Zhou X-R, Zhu Q-H, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819–833

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nebert DW, Gonzalez FJ (1987) P450 genes; structure, evolution, and regulation. Annu Rev Biochem 56:945–993

    Article  PubMed  CAS  Google Scholar 

  • Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi G, Mazzuccato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N, Sun T-p, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    PubMed  CAS  Google Scholar 

  • Pearce DW, Reid DM, Pharis RP (1991) Ethylene-mediated regulation of gibberellin content and growth in Helianthus annuus L. Plant Physiol 95:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Porter TD, Coon MJ (1991) Cytochrome-P-450: multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 266:13469–13472

    PubMed  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130

    PubMed  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25:5314–5322

    Article  PubMed  CAS  Google Scholar 

  • Pugliesi C, Fambrini M, Salvini M (2011) Molecular cloning and expression profile analysis of three sunflower (Helianthus annuus L.) diterpene synthase genes. Biochem Genet 49:46–62

    Google Scholar 

  • Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100:550–560

    Article  CAS  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New York, Oxford

    Google Scholar 

  • Sakamoto TK, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotech 15:144–147

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nature Biotech 21:909–913

    Article  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Sawada Y, Katsumata T, Kitamura J, Kawaide H, Nakajima M, Asami T, Nakaminami K, Kurahashi T, Mitsuhashi W, Inoue Y, Toyomasu T (2008) Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness. J Exp Bot 59:3383–3393

    Article  PubMed  CAS  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  PubMed  CAS  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257

    Article  PubMed  CAS  Google Scholar 

  • Siebert PD, Chenchik A, Kellog DE, Lukyanov KA, Lukyanov SA (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Article  PubMed  CAS  Google Scholar 

  • Singh D-P, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-xidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Sun T-p, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci 10:123–129

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32–45

    Article  PubMed  CAS  Google Scholar 

  • Vukich M, Giordani T, Natali L, Cavallini A (2009a) Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biol 23:9150. doi:10.1186/1471-229-9-150

  • Vukich M, Schulman AH, Giordani T, Natali L, Kalendar R, Cavallini A (2009b) Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet 119:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Weiss EA (2000) Oilseed crops, 2nd edn. Blackwell, London

    Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Bak S, Paquette S (2002) Cytochrome P450. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi/10.1199/tab.0028

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  PubMed  CAS  Google Scholar 

  • Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7:1307–1317

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S (2006) Gibberellin biosynthesis in Arabidopsis. Phytochem Rev 5:39–47

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Peterson T (1999) Genome rearrangement by nonlinear transposons in maize. Genetics 153:1403–1410

    PubMed  CAS  Google Scholar 

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Pugliesi.

Additional information

Marco Fambrini and Lorenzo Mariotti contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (DOC 31 kb)

Supplementary material 3 (DOC 41 kb)

Supplementary material 4 (DOC 32 kb)

Supplementary material 5 (DOC 33 kb)

Suppl. Fig. 6

Pictures of untransformed (a, b) and transformed (c, d) calli obtained from dwarf2 (dw2) mutant leaves of sunflower (Helianthus annuus L.). Genetic transformation was performed with an Agrobacterium strain harbouring the wild type (WT) HaKAO1 cDNA fused in a vector pK7WGF2 (35S::GFP) (Karimi et al. 2002). Pictures were taken using bright field (a, c) and GFP (b, d) filters. Scale bars = 100 μm. (TIFF 25490 kb)

Supplementary material 7 (DOC 38 kb)

Supplementary material 8 (DOC 36 kb)

Supplementary material 9 (DOC 39 kb)

Suppl. Fig. 10 a

Schematic diagram explanations of PCR conduced on genomic DNA of wild type (DW2) and dwarf2 (dw2) mutant of sunflower (Helianthus annuus L.) to test the chromosomal rearrangement occurring in the dw2 genome. The 6th intron of the HaKAO1 gene and the position of primers are indicated; the 403-bp deletion (403) is depicted as gray bar; the 7th exon of the HaKAO1 gene is depicted as black box. The 20 nucleotides adjacent to the primer FIN2 displayed 100% identity between the two genotypes and are showed. The region adjacent to these nucleotides displayed a low identity (see also Suppl. Fig. 9) and is depicted as black bar in DW2 and gray bar in dw2. The arrows indicate the 5’- 3’-primer direction. b The genomic PCR products of HaKAO1 from wild type (DW2) and mutant (dw2) using four different primer combinations. The products were resolved on ethidium bromide-stained 1.5% TAE-agarose gel and visualized under UV light. The size of the PCR products are shown. (TIFF 8297 kb)

Supplementary material 11 (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fambrini, M., Mariotti, L., Parlanti, S. et al. The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence. Plant Mol Biol 75, 431–450 (2011). https://doi.org/10.1007/s11103-011-9740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9740-x

Keywords

Navigation