Skip to main content
Log in

Regulation of the early GA biosynthesis pathway in pea

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The early steps in the gibberellin (GA) biosynthetic pathway are controlled by single copy genes or small gene families. In pea (Pisum sativum L.) there are two ent-kaurenoic acid oxidases, one expressed only in the seeds, while ent-copalyl synthesis and ent-kaurene oxidation appear to be controlled by single copy genes. None of these genes appear to show feedback regulation and the only major developmental regulation appears to be during seed development. During shoot maturation, transcript levels do not change markedly with the result that all the three genes examined are expressed in mature tissue, supporting recent findings that these tissues can synthesise GAs. It therefore appears that the regulation of bioactive GA levels are determined by the enzymes encoded by the 2-oxoglutarate-dependent dioxygenase gene families controlling the later steps in GA biosynthesis. However the early steps are nonetheless important as a clear log/linear relationship exists between elongation and the level of GA1 in a range of single and double mutants in genes controlling these steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GA:

Gibberellin

CPS:

ent-copalyl diphosphate synthase

KS:

ent-kaurene synthase

KO:

ent-kaurene oxidase

KAO:

ent-kaurenoic acid oxidase

GA20ox:

GA 20-oxidase

GA3ox:

GA 3-oxidase

GA2ox:

GA 2-oxidase

Ps :

Pisum sativum

Cm :

Cucurbita maxima

At :

Arabidopsis thaliana

Os :

Oryza sativa

WT:

Wild-type

EtBr:

Ethidium bromide

References

  • Aach H, Bode H, Robinson DG, Graebe JE (1997) ent-kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202:211–219

    Article  CAS  Google Scholar 

  • Ait-Ali T, Swain SM, Reid JB, Sun TP, Kamiya Y (1997) The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J 11:443–454

    Article  PubMed  CAS  Google Scholar 

  • Appleford NEJ, Lenton JR (1991) Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rht3 dwarfing alleles. Planta 183:229–236

    Article  CAS  Google Scholar 

  • Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 Locus. Plant Cell 7:195–201

    Article  PubMed  CAS  Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, Garcia-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  PubMed  CAS  Google Scholar 

  • Cowling RJ, Kamiya Y, Seto H, Harberd NP (1998) Gibberellin dose-response regulation of GA4 gene transcript levels in Arabidopsis. Plant Physiol 117:1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131:335–344

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Smith JJ, Helliwell CA, Poole AT, Reid JB (2004) The pea gene LH encodes ent-kaurene oxidase. Plant Physiol 134:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Elliott RC, Ross JJ, Smith JJ, Lester DR, Reid JB (2001) Feed-forward regulation of gibberellin deactivation in pea. J Plant Growth Reg 20:87–94

    Article  CAS  Google Scholar 

  • Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CJ, Kamiya Y, Sun TP (2003) Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol 132:830–839

    Article  PubMed  CAS  Google Scholar 

  • Frydman VM, Gaskin P, MacMillan J (1974) Qualitative and quantitative analyses of gibberellins throughout seed maturation in Pisum sativum cv. Progress no.9. Planta 118:123–132

    Google Scholar 

  • Garcia-Martinez JL, Gil J (2002) Light regulation of gibberellin biosynthesis and mode of action. J Plant Growth Reg 20:354–368

    Article  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sc 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2002) Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? J Plant Growth Reg 20:319–331

    Article  CAS  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JAD, Peacock WJ, Dennis ES (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci USA 95:9019–9024

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Lester DR, MacKenzie-Hose AK, Davies PJ, Ross JJ, Reid JB (1999a) The influence of the null le-2 mutation on gibberellin levels in developing pea seeds. Plant Growth Reg 27:83–89

    Article  CAS  Google Scholar 

  • Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB (1999b) Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J 19:65–73

    Article  PubMed  CAS  Google Scholar 

  • Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200:159–166

    Article  PubMed  CAS  Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1997) Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94:8907–8911

    Article  PubMed  CAS  Google Scholar 

  • Metzger JD (1985) Role of gibberellins in the enviromental control of stem growth in Thlaspi arvense. Plant Physiol 78:8–13

    PubMed  CAS  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    PubMed  CAS  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and Expression of 3 Gibberellin 20-Oxidase cDNA Clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Potts WC, Reid JB (1983) Internode length in pisum.III. The effect and interaction of the Na/na and Le/le gene differences on endogenous gibberellin-like substances. Physiol Plant 57:448–454

    Article  CAS  Google Scholar 

  • Proebsting WM, Hedden P, Lewis MJ, Croker SJ, Proebsting LN (1992) Gibberellin concentration and transport in genetic lines of pea-effects of grafting. Plant Physiol 100:1354–1360

    Article  PubMed  CAS  Google Scholar 

  • Reid JB, (1986) Internode length in Pisum. Three further loci, lh, ls and lk. Ann Bot 57:577–592

    Google Scholar 

  • Reid JB, Potts BM (1986) Internode length in Pisum. Two further mutants, lh and ls, with reduced gibberellin synthesis, and a gibberellin insensitive mutant, lk. Plant Physiol 66:417–426

    Article  CAS  Google Scholar 

  • Reid JB, Ross JJ (1993) A mutant based approach, using Pisum sativum, to understand plant growth. Int J Plant Sci 154:22–34

    Article  Google Scholar 

  • Reid JB, Ross JJ, Swain SM (1992) Internode length in Pisum. A new, slender mutant with elevated levels of C19 gibberellins. Planta 188:462–467

    Article  CAS  Google Scholar 

  • Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128:734–741

    Article  PubMed  CAS  Google Scholar 

  • Reid JB, Symons GM, Ross JJ (2004) Regulation of gibberellin and brassinosteroid biosynthesis by genetic, environmental and hormonal factors. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Kluwer, Netherlands, pp 179–203

    Google Scholar 

  • Ross JJ, Reid JB, Gaskin P, MacMillian J (1989) Internode length in Pisum. Estimation of GA1 levels in genotypes Le, le and le d. Physiol Plant 76:173–176

    Article  CAS  Google Scholar 

  • Ross JJ, Reid JB, Swain SM, Hasan O, Poole AT, Hedden P, Willis CL (1995) Genetic regulation of gibberellin deactivation in Pisum. Plant J 7:513–523

    Article  CAS  Google Scholar 

  • Ross JJ, MacKenzie-Hose AK, Davies PJ, Lester DR, Twitchin B, Reid JB (1999) Further evidence for feedback regulation of gibberellin biosynthesis in pea. Physiol Plant 105:532–538

    Article  CAS  Google Scholar 

  • Ross JJ, Davidson SE, Wolbang CM, Bayly-Stark E, Smith JJ, Reid JB (2003) Developmental regulation of the gibberellin pathway in pea shoots. Funct Plant Biol 30:83–89

    Article  CAS  Google Scholar 

  • Silverstone AL, Chang CW, Krol E, Sun TP (1997) Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J 12:9–19

    Article  PubMed  CAS  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  PubMed  CAS  Google Scholar 

  • Smith MW, Yamaguchi S, Ait-Ali T, Kamiya Y (1998) The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiol118:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Smith VA, Knatt CJ, Gaskin P, Reid JB (1992) The distribution of gibberellins in vegetative tissue of Pisum sativum L. Plant Physiol 99:368–371

    PubMed  CAS  Google Scholar 

  • Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required for embryo growth and seed development in pea. Plant J 12:1329–1338

    Article  CAS  Google Scholar 

  • Swain SM, Ross JJ, Reid JB, Kamiya Y (1995) Gibberellins and pea seed development—expression of the lh i , ls and le 5839 mutations. Planta 195:426–433

    Article  CAS  Google Scholar 

  • Swain SM, Reid JB, Ross JJ (1993) Seed development in Pisum—the lh i allele reduces gibberellin levels in developing seeds, and increases seed abortion. Planta 191:482–488

    Article  CAS  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T, Kawaide H, Sekimoto H, vonNumers C, Phillips AL, Hedden P, Kamiya Y (1997) Cloning and characterization of a cDNA encoding gibberellin 20- oxidase from rice (Oryza sativa) seedlings. Physiol Plant 99:111–118

    Article  CAS  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RGS, Kamiya Y, Sun TP (1998a) Phytochrome regulation and differential expression of gibberellin 3-β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Sun TP, Kawaide H, Kamiya Y (1998b) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Jenny Smith, Tracey Winterbottom, Ian Cummings, Andrew Poole, Martin Jack, and Dr Noel Davies for technical support and Professor Lew Mander (Australian National University, Canberra) for labelled GA standards. This work was supported by the Australian Research Council with a grant to JBR and postgraduate scholarships to SED and SMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, S.E., Swain, S.M. & Reid, J.B. Regulation of the early GA biosynthesis pathway in pea. Planta 222, 1010–1019 (2005). https://doi.org/10.1007/s00425-005-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0045-7

Keywords

Navigation