Skip to main content
Log in

Gibberellin Biosynthesis in Arabidopsis

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Some terpenoids play important roles in plant development as growth regulators. Gibberellins (GAs) are a group of diterpenoids, of which isoprene units are mainly derived from the methylerythritol phosphate pathway in the plastid. Geranylgeranyl diphosphate, a common precursor for diterpenoids, is converted to biologically active GAs through reactions catalyzed by terpene cyclases, cytochrome P450 monooxygenases, and 2-oxoglutarate-dependent dioxygenases. Bioactive GAs act as critical growth regulators throughout the life cycle of plants. There is accumulating evidence that the cellular concentration of hormonal GAs is strictly regulated by multiple endogenous and environmental cues. This review aims to summarize our recent findings on the regulation of GA biosynthesis in the model species Arabidopsis thaliana, with emphasis on the use of the genome information, transcriptome analysis and relevant mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPS:

ent-copalyl diphosphate synthase

GGDP:

geranylgeranyl diphosphate

GA:

Gibberellins

KAO:

ent-kaurenoic acid oxidase

KO:

ent-kaurene oxidase

KS:

ent-kaurene synthase

P450:

cytochrome P450 monoxygenases

2ODD:

2-oxoglutarate-dependent dioxygenases

References

  • Bewley JD and Black M (1982). Physiology and Biochemistry of Seeds: Viability, Dormancy and Environmental Control. Springer-Verlag, Berlin

    Google Scholar 

  • Chiang H-H, Hwang I and Goodman HM (1995). Isolation of the Arabidopsis GA4 locus. Plant Cell 7: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M and Vachon G (2004). AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol. 136: 3660–3669

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2004). Plant Hormones: Biosynthesis, Signal Transduction, Action! Dordrecht. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Derkx MPM and Karssen CM (1993). Effects of light and temperature on seed dormancy and gibberellin-stimulated germination in Arabidopsis thaliana: studies with gibberellin-deficient and gibberellin-insensitive mutants. Physiol. Plant. 89: 360–368

    Article  CAS  Google Scholar 

  • Fleet CM, Yamaguchi S, Hanada A, Kawaide H, David CD, Kamiya Y and Sun T-p (2003). Overexpression of AtCPS and AtKS in Arabidopsis thaliana confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol. 132: 830–839

    Article  PubMed  CAS  Google Scholar 

  • Fleet CM and Sun T-p (2005). A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Fravel DR, Grimm CC and Lloyd SW (2002). Volatile compounds emitted by Sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii. J. Agric. Food Chem. 50: 3761–3764

    Article  PubMed  CAS  Google Scholar 

  • Hedden P and Phillips AL (2000). Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 5: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL, Cecilia Rojas M, Carrera E and Tudzynski B (2002). Gibberellin biosynthesis in plants and fungi: a case of convergent evolution?. J. Plant Growth Regul. 20: 319–331

    Article  CAS  Google Scholar 

  • Helliwell CA, Poole A, Peacock WJ and Dennis ES (1999). Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol. 119: 507–510

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ and Dennis ES (2001a). A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J. 28: 201–208

    Article  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES and Peacock WJ (2001b). The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc. Natl. Acad. Sci. USA 98: 2065–2070

    Article  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Kawaide H, Chen Xinbo, Kamiya Y and Matsuoka M (1999). The gene encoding tobacco gibberellin 3ß-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development. Plant J. 20: 15–24

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M and Matsuoka M (2003). Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants. Plant J. 34: 1–12

    Article  Google Scholar 

  • Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y and Yamaguchi S (2002). Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J. Biol. Chem. 277: 45188–45194

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M (1980). Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58: 257–263

    Article  Google Scholar 

  • Lewis GP, Knudsen JT, Klitgaard BB and Pennington RT (2003). The floral scent of Cyathostegia mathewsii (Leguminosae, Papilionoideae) and preliminary observations on reproductive biology. Biochem. Syst. Ecol. 31: 951–962

    Article  CAS  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J and Sandberg G (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17: 1090–1104

    Article  PubMed  CAS  Google Scholar 

  • MacMillan J (2002). Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Regul. 20: 387–442

    Article  CAS  Google Scholar 

  • Nambara E, Akazawa T and McCourt P (1991). Effects of the gibberellin biosynthetic inhibitor uniconazol on mutants of Arabidopsis. Plant Physiol. 97: 736–738

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara Y, Kamiya Y and Yamaguchi S (2003). Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15: 1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N, Sun T-p & Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell S61–S80

  • Otsuka M, Kenmoku H, Ogawa M, Okada K, Mitsuhashi W, Sassa T, Kamiya Y, Toyomasu T and Yamaguchi S (2004). Emission of ent-kaurene, a diterpenoid hydrocarbon precursor for gibberellins, into the headspace from plants. Plant Cell Physiol. 45: 1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T, Huttly AK, Gaskin P, Graebe JE and Hedden P (1995). Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 108: 1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Rebers M, Kaneta T, Kawaide H, Yamaguchi S, Yang Y-Y, Ryozo I, Sekimoto H and Kamiya Y (1999). Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J. 17: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Kwak S-S, Kamiya Y, Yamane H, Sakurai A, Murofushi N and Takahashi N (1991). Effects of deoxygibberellin C (DGC) and 16-deoxo-DGC on gibberellin 3β-hydroxylase and plant growth. Plant Cell Physiol. 32: 239–245

    CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Taketa S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M and Matsuoka M (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134: 1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D and Lohmann JU (2005). A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Chang C-w, Krol E and Sun T-p (1997). Developmental regulation of the gibberellin biosynthetic genes GA1 in Arabidopsis thaliana. Plant J. 12: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD and Amasino RM (2003). Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15: 151–163

    Article  PubMed  CAS  Google Scholar 

  • Sun T-p and Kamiya Y (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6: 1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Phillips AL and Hedden P (1999). Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc. Natl. Acad. Sci. USA 96: 4698–4703

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG and Sun T-p (2004). Update on gibberellin signalling. A tale of the tall and the short. Plant Physiol. 135: 668–676

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T, Kawaide H, Ishizaki A, Shinoda S, Otsuka M, Mitsuhashi W and Sassa T (2000). Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase. Biosci. Biotechnol. Biochem. 64: 660–664

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Phillips AL, Gaskin P and Hedden P (1998). Function and substrate specificity of the gibberellin 3β-hydroxylase encoded by the Arabidopsis GA4 gene. Plant Physiol. 117: 559–563

    Article  PubMed  CAS  Google Scholar 

  • Xu YL, Li L, Wu KQ, Peeters AJM, Gage DA and Zeevaart JAD (1995). The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc. Natl. Acad. Sci. USA 92: 6640–6644

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Sun T-p, Kawaide H and Kamiya Y (1998a). The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol. 116: 1271–1278

    Article  CAS  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RGS, Kamiya Y and Sun T-P (1998b). Phytochrome regulation and differential expression of gibberellin 3ß-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10: 2115–2126

    Article  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y and Sun T-p (2001). Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J. 28: 443–454

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y and Yamaguchi S (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis seeds. Plant Cell 16: 367–378

    Article  PubMed  CAS  Google Scholar 

  • Yang YY, Nagatani A, Zhao YJ, Kang BJ, Kentrick RE and Kamiya Y (1995). Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana. Plant Cell Physiol. 36: 1205–1211

    PubMed  CAS  Google Scholar 

  • Zhou R, Yu M and Pharis RP (2004). 16,17-dihydro gibberellin A5 competitively inhibits a recombinant Arabidopsis GA 3beta-hydroxylase encoded by the GA4 gene. Plant Physiol. 135: 1000–1007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinjiro Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, S. Gibberellin Biosynthesis in Arabidopsis. Phytochem Rev 5, 39–47 (2006). https://doi.org/10.1007/s11101-005-4248-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-005-4248-0

Key words

Navigation