Skip to main content
Log in

Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn SJ, Im YJ, Chung GC, Cho BH (1999) Inducible expression of plasma membrane H + -ATPase in the roots of figleaf gourd plants under chilling root temperature. Physiol Plant 106:35–40

    Article  CAS  Google Scholar 

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  PubMed  CAS  Google Scholar 

  • Aoki-Kinoshita KF (2006) Overview of KEGG applications to omics-related research. J Pestic Sci 31:296–299

    Article  CAS  Google Scholar 

  • Arora R, Palta JP (1991) A loss in the plasma-membrane atpase activity and its recovery coincides with incipient freeze-thaw injury and postthaw recovery in onion bulb scale tissue. Plant Physiol 95:846–852

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, van der Hoeven RS, De Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68

    Article  PubMed  Google Scholar 

  • Bao F, Li JY (2002) Evidence that the auxin signaling pathway interacts with plant stress response. Acta Bot Sin 44:532–536

    CAS  Google Scholar 

  • Bernier G, Perilleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16

    Article  PubMed  CAS  Google Scholar 

  • Bhuiyan NH, Liu WP, Liu GS, Selvaraj G, Wei YD, King J (2007) Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol 64:305–318

    Article  PubMed  CAS  Google Scholar 

  • Bowsher CG, Lacey AE, Hanke GT, Clarkson DT, Saker LR, Stulen I, Emes MJ (2007) The effect of G1c6P uptake and its subsequent oxidation within pea root plastids on nitrite reduction and glutamate synthesis. J Exp Bot 58:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Bruggmann R, Abderhalden O, Reymond P, Dudler R (2005) Analysis of epidermis- and mesophyll-specific transcript accumulation in powdery mildew-inoculated wheat leaves. Plant Mol Biol 58:247–267

    Article  PubMed  CAS  Google Scholar 

  • Chapman NH, Burt C, Nicholson P (2009) The identification of candidate genes associated with Pch2 eyespot resistance in wheat using cDNA-AFLP. Theor Appl Genet 118:1045–1057

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Gusta LV, Fowler DB (1983) Freezing-injury and root development in winter cereals. Plant Physiol 73:773–777

    Article  PubMed  CAS  Google Scholar 

  • Chen GP, Ma WS, Huang ZJ, Xu T, Xue YB, Shen YZ (2003) Isolation and characterization of TaGSK1 involved in wheat salt tolerance. Plant Sci 165:1369–1375

    Article  CAS  Google Scholar 

  • Choudhary M, Debarati B, Asis D, Niranjan C, Subhra C (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Prot 8:1579–1588

    Article  CAS  Google Scholar 

  • Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW, Lee JH (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443:91–99

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Donaldson RP, Luster DG (1991) Multiple forms of plant cytochromes-P-450. Plant Physiol 96:669–674

    Article  PubMed  CAS  Google Scholar 

  • Espartero J, SanchezAguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Fowler DB (2008) Cold acclimation threshold induction temperatures in cereals. Crop Sci 48:1147–1154

    Article  Google Scholar 

  • Fowler DB, Limin AE (2004) Interactions among factors regulating phenological development and acclimation rate determine low-temperature tolerance in wheat. Ann Bot 94:717–724

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Whitelam GC (2004) Light signals, phytochromes and cross-talk with other environmental cues. J Exp Bot 55:271–276

    Article  PubMed  CAS  Google Scholar 

  • Galiba G, Kerepesi I, Snape JW, Sutka J (1997) Location of a gene regulating cold-induced carbohydrate production on chromosome 5A of wheat. Theor Appl Genet 95:265–270

    Article  CAS  Google Scholar 

  • Ganeshan S, Vitamvas P, Fowler DB, Chibbar RN (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J Exp Bot 59:2393–2402

    Article  PubMed  CAS  Google Scholar 

  • Ganeshan S, Denesik T, Fowler DB, Chibbar RN (2009a) Quantitative expression analysis of selected low temperature-induced genes in autumn-seeded wheat (Triticum aestivum L.) reflects changes in soil temperature. Environ Exp Bot 66:46–53

    Article  CAS  Google Scholar 

  • Ganeshan S, Sharma P, Chibbar RN (2009b) Functional genomics for crop improvement. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. Springer, Netherlands, pp 63–95

    Google Scholar 

  • Ghosh S, Strum JC, Bell RM (1997) Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J 11:45–50

    PubMed  CAS  Google Scholar 

  • Gonzalez D, Bowen AJ, Carroll TS, Conlan RS (2007) The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol 27:5306–5315

    Article  PubMed  CAS  Google Scholar 

  • Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J 47:720–734

    Article  PubMed  CAS  Google Scholar 

  • Gulick PJ, Drouin S, Yu ZH, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    PubMed  CAS  Google Scholar 

  • Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low-temperature. Plant Physiol 100:502–508

    Article  PubMed  CAS  Google Scholar 

  • He P, Friebe BR, Gill BS, Zhou JM (2003) Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 52:401–414

    Article  PubMed  CAS  Google Scholar 

  • Houston NL, Fan CZ, Xiang QY, Schulze JM, Jung R, Boston RS (2005) Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol 137:762–778

    Article  PubMed  CAS  Google Scholar 

  • Hur J, Jung KH, Lee CH, An GH (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions. J Biosci 30:657–667

    Article  PubMed  CAS  Google Scholar 

  • Inatsugi R, Nakamura M, Nishida I (2002) Phosphatidylcholine biosynthesis at low temperature: differential expression of CTP: phosphorylcholine cytidylyltransferase isogenes in Arabidopsis thaliana. Plant Cell Physiol 43:1342–1350

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Yoshida S (1985) Seasonal-changes in plasma-membranes and mitochondria isolated from Jerusalem artichoke tubers possible relationship to cold hardiness. Plant Cell Physiol 26:1331–1344

    CAS  Google Scholar 

  • Jones PG, Mitta M, Kim Y, Jiang WN, Inouye M (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A 93:76–80

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee YS (2002) Phosphatidylinositol 3-and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412

    Article  PubMed  CAS  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    Article  PubMed  CAS  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal 50:347–363

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-Box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Kinney J, Clarkson D, Loughman B (1987) The regulation of phosphatidylcholine biosynthesis in rye (Secale cereale) roots. Biochem J 242:755–759

    PubMed  CAS  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Kocsy G, Athmer B, Perovic D, Himmelbach A, Szucs A, Vashegyi I, Schweizer P, Galiba G, Stein N (2010) Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol Genet Genomics 283:351–363

    Article  PubMed  CAS  Google Scholar 

  • Kovács Z, Simon-Sarkadi L, Sovány C, Kirsch K, Galiba G, Kocsy G (2010) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci (in press) Corrected Proof

  • Lee Y, Bak G, Choi Y, Chuang WI, Cho HT, Lee Y (2008a) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim ES, Choi Y, Hwang I, Staiger CJ, Chung YY, Lee Y (2008b) The arabidopsis phosphatidylinositol 3-kinase is important for pollen development. Plant Physiol 147:1886–1897

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Ahsan N, Lee S, Lee J, Bahk J, Kang K, Lee B (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Limin AE, Fowler DB (2002) Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell). Ann Bot 89:579–585

    Article  PubMed  CAS  Google Scholar 

  • Liu ZC, Meyerowitz EM (1995) Leunig regulates agamous expression in arabidopsis flowers. Development 121:975–991

    PubMed  CAS  Google Scholar 

  • Liu HY, Nefsky BS, Walworth NC (2002) The Ded1 DEAD box helicase interacts with Chk1 and Cdc2. J Biol Chem 277:2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plant 105:450–458

    Article  CAS  Google Scholar 

  • Ma YY, Zhang YL, Lu J, Shao HB (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotech 8:2004–2010

    CAS  Google Scholar 

  • Mallard S, Negre S, Pouya S, Gaudet D, Lu ZX, Dedryver F (2008) Adult plant resistance-related gene expression in ‘Camp Remy’ wheat inoculated with Puccinia striiformis. Mol Plant Pathol 9:213–225

    Article  PubMed  CAS  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, Farajalla MR, Liu W, Danyluk J, Ubayasena LWC, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Muramoto Y, Yokota S, Ueda A, Takabe T (2004) Structural and transcriptional characterization of a salt-responsive gene encoding putative ATP-dependent RNA helicase in barley. Plant Sci 167:63–70

    Article  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6:212–234

    Article  PubMed  CAS  Google Scholar 

  • Oufir M, Legay S, Nicot N, Van Moer K, Hoffmann L, Renaut J, Hausman JF, Evers D (2008) Gene expression in potato during cold exposure: changes in carbohydrate and polyamine metabolisms. Plant Sci 175:839–852

    Article  CAS  Google Scholar 

  • Owttrim GW (2006) RNA helicases and abiotic stress. Nucleic Acids Res 34:3220–3230

    Article  PubMed  CAS  Google Scholar 

  • Palta JP, Meade LS (1989) During cold acclimation of potato species an increase in 18 2 and a decrease in 16 0 in plasma membrane phospholipids coincide with an increase in freezing stress resistance. Plant Physiol (Rockville) 89:89

    Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11

    Google Scholar 

  • Pearce RS, Houlston CE, Atherton KM, Rixon JE, Harrison P, Hughes MA, Dunn MA (1998) Localization of expression of three cold-induced genes, blt101, blt4.9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiol 117:787–795

    Article  PubMed  CAS  Google Scholar 

  • Pollard A, Wynjones RG (1979) Enzyme-activities in concentrated-solutions of glycinebetaine and other solutes. Planta 144:291–298

    Article  CAS  Google Scholar 

  • Rahier A, Smith M, Taton M (1997) The role of cytochrome b(5) in 4 alpha-methyl-oxidation and C5(6) desaturation of plant sterol precursors. Biochem Biophys Res Com 236:434–437

    Article  PubMed  CAS  Google Scholar 

  • Rajendrakumar CSV, Reddy BVB, Reddy AR (1994) Proline-protein interactions—protection of structural and functional integrity of M(4) lactate-dehydrogenase. Biochem Biophys Res Commun 201:957–963

    Article  PubMed  CAS  Google Scholar 

  • Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G (2003) Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics 82:606–618

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Ichimura K, Imada S, Yamaki S (2001) Sucrose synthase and sucrose phosphate synthase, but not acid invertase, are regulated by cold acclimation and deacclimation in cabbage seedlings. J Plant Physiol 158:847–852

    Article  CAS  Google Scholar 

  • Savitch LV, Harney T, Huner NPA (2000) Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol Plant 108:270–278

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Jonsson L, Stymne S, Stobart K (1992) Evidence for cytochrome-B5 as an electron-donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus-Communis L). Biochem J 287:141–144

    PubMed  CAS  Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Hurry V, Gustafsson P, Gardestrom P (1997) Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant J 12:605–614

    Article  PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    Article  PubMed  CAS  Google Scholar 

  • Sussman MR, Surowy TK (1987) Physiology and molecular biology of membrane atpases. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology, vol 4 V + 365P. Oxford University Press, New York, Illus Paper 47–70

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Trepp GB, Temple SJ, Bucciarelli B, Shi LF, Vance CP (1999) Expression map for genes involved in nitrogen and carbon metabolism in alfalfa root nodules. Mol Plant-Microbe Interact 12:526–535

    Article  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana—effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Vance DE, Choy PC (1979) How is phosphatidylcholine biosynthesis regulated. Trends Biochem Sci 4:145–148

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Peleman JD, van Eijk MJT (2007) AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2:1399–1413

    Article  PubMed  CAS  Google Scholar 

  • Wang XM, Li WQ, Li MY, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plant 126:90–96

    Article  CAS  Google Scholar 

  • Wang DK, Pei KM, Fu YP, Sun ZX, Li SJ, Liu HQ, Tang K, Han B, Tao YZ (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Tang CL, Zhang G, Li YC, Wang CF, Liu B, Qu ZP, Zhao J, Han QM, Huang LL, Chen XM, Kang ZS (2009a) cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp tritici. BMC Genomics 10:289

  • Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y (2009b) Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics 9:4529–4538

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Liu W, Chen XM, Tang CL, Dong YL, Ma JB, Huang XL, Wei GR, Han QM, Huang LL, Kang ZS (2010) Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA—AFLP and comparison to compatible interaction. BMC Plant Biol 10:9

    Google Scholar 

  • Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L (2006) Identification of cold acclimation-responsive rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ 29:558–570

    Article  PubMed  CAS  Google Scholar 

  • Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) Atvps34, a phosphatidylinositol 3-kinase of Arabidopsis-Thaliana, is an essential protein with homology to a calcium-dependent lipid-binding domain. Proc Natl Acad Sci USA 91:11398–11402

    Article  PubMed  CAS  Google Scholar 

  • Winfield MO, Lu CG, Wilson ID, Coghill JA, Edwards KJ (2009) Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol 9:55

  • Winfield MO, Lu CG, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Wang GJ, Xiao JL, Ma FM, Zhang HJ, Sun Y, Diao YL, Huang JH, Guo Q, Liu DJ (2010) Identification of genes involved in stem rust resistance from wheat mutant D51 with the cDNA-AFLP technique. Mol Biol Rep 37:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Zang X, Komatsu S (2007) A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochem 68:426–437

    Article  CAS  Google Scholar 

  • Zhang L, Meakin H, Dickinson M (2003) Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Mol Plant Pathol 4:469–477

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Genome Canada/Genome Prairie (DBF and RNC), Ducks Unlimited (DBF), Canada Research Chairs (RNC) and Canada Foundation for Innovation (RNC) is gratefully acknowledged. The excellent technical assistance of Upekha Basnayaka, Jenna Drinkwater, Leah Madsen, Dr. Ximing Luo, Garcia Schellhorn and Twyla Chastain is greatly appreciated. The excellent help of summer students Pubudu Basnayaka and Daniel Hiebert is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra N. Chibbar.

Additional information

Seedhabadee Ganeshan and Pallavi Sharma contributed equally to this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganeshan, S., Sharma, P., Young, L. et al. Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. Plant Mol Biol 75, 379–398 (2011). https://doi.org/10.1007/s11103-011-9734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9734-8

Keywords

Navigation