Skip to main content
Log in

Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

A comparative analysis of gene expression profiles during cold acclimation and deacclimation is necessary to elucidate the molecular mechanisms of cold stress responses in higher plants. We analyzed gene expression profiles in the process of cold acclimation and deacclimation (recovery from cold stress) using two microarray systems, the 7K RAFL cDNA microarray and the Agilent 22K oligonucleotide array. By both microarray analyses, we identified 292 genes up-regulated and 320 genes down-regulated during deacclimation, and 445 cold up-regulated genes and 341 cold down-regulated genes during cold acclimation. Many genes up-regulated during deacclimation were found to be down-regulated during cold acclimation, and vice versa. The genes up-regulated during deacclimation were classified into (1) regulatory proteins involved in further regulation of signal transduction and gene expression and (2) functional proteins involved in the recovery process from cold-stress-induced damages and plant growth. We also applied expression profiling studies to identify the key genes involved in the biosynthesis of carbohydrates and amino acids that are known to play important roles in cold acclimation. We compared genes that are regulated during deacclimation with those regulated during rehydration after dehydration to discuss the similarity and difference of each recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GM:

Germination medium

LEA:

Late-embryogenesis-abundant

References

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Cheng CL, Acedo GN, Cristinsin M, Conkling MA (1992) Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA 89:1861–1864

    Article  PubMed  CAS  ADS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  PubMed  CAS  ADS  Google Scholar 

  • Dijkwel PP, Kock P, Bezemer R, Weisbeek PJ, Smeekens S (1996) Sucrose represses the developmentally controlled transient activation of the plastocyanin gene in Arabidopsis thaliana seedlings. Plant Physiol 110:455–463

    PubMed  CAS  Google Scholar 

  • Fleck B, Harberd NP (2002) Evidence that the Arabidopsis nuclear gibberellin signalling protein GAI is not destabilised by gibberellin. Plant J 32:935–947

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456

    PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis. Plant Physiol 87:745–750

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gu R, Fonseca S, Puskas LG, Hackler L, Zvara A, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265–276

    PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Shinozaki K (1997) Regulation of plant MAP kinase cascade by environmental stresses and plant hormones. Tanpakushitsu Kakusan Koso 42:706–716

    PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  ADS  Google Scholar 

  • Kaplan F, Guy CL (2004) beta-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    Article  PubMed  CAS  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature–stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  PubMed  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF (2004) Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 134:1586–1597

    Article  PubMed  CAS  Google Scholar 

  • Lee BH, Lee H, Xiong L, Zhu JK (2002) A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell 14:1235–1251

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  PubMed  CAS  Google Scholar 

  • McKown R, Kuroki G, Warren G (1996) Cold responses of Arabidopsis mutants impaired in freezing tolerance. J Exp Bot 47:1919–1925

    CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarray. Plant J 34:868–887

    Article  PubMed  CAS  Google Scholar 

  • Oquist G, Huner NP (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Article  PubMed  CAS  Google Scholar 

  • Raines CA, Horsnell PR, Holder C, Lloyd JC (1992) Arabidopsis thaliana carbonic anhydrase: cDNA sequence and effect of CO2 on mRNA levels. Plant Mol Biol 20:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Ristic Z, Ashworth EN (1993) Ultrastructural evidence that intracellular ice formation and possibly cavitation are the sources of freezing injury in supercooling wood tissue of Cornus florida L. Plant Physiol 103:753–761

    PubMed  Google Scholar 

  • Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002a) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002b) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  ADS  Google Scholar 

  • Tahtiharju S, Palva T (2001) Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J 26:461–470

    Article  PubMed  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (1998) Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A 95:7799–7804

    Article  PubMed  CAS  ADS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Lee H, Huang R, Zhu JK (2004) A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance. Plant J 40:536–545

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236:331–340

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Matuo Uemura, Dr. Riichiro Yoshida, and Dr. Fumiyoshi Myouga for their helpful discussion and advices. We thank all the members of RIKEN Plant Functional Genomics Research Team and Plant Molecular Biology Laboratory for their help. This work was supported in part by a grant for Genome Research from RIKEN, the Program for Promotion of Basic Research Activities for Innovative Biosciences, the Special Coordination Fund of the Science and Technology Agency, and a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MECSST) to K.S. It was also supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (C) ‘Genome Science’ from MECSST to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Shinozaki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oono, Y., Seki, M., Satou, M. et al. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6, 212–234 (2006). https://doi.org/10.1007/s10142-005-0014-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-005-0014-z

Keywords

Navigation