Skip to main content
Log in

Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Freezing tolerance in plants develops through acclimation to cold by growth at low, above-freezing temperatures. Wheat is one of the most freezing-tolerant plants among major crop species and the wide range of freezing tolerance among wheat cultivars makes it an excellent model for investigation of the genetic basis of cold tolerance. Large numbers of genes are known to have altered levels of expression during the period of cold acclimation and there is keen interest in deciphering the signaling and regulatory pathways that control the changes in gene expression associated with acquired freezing tolerance. A 5740 feature cDNA amplicon microarray that was enriched for signal transduction and regulatory genes was constructed to compare changes in gene expression in a highly cold-tolerant winter wheat cultivar CDC Clair and a less tolerant spring cultivar, Quantum. Changes in gene expression over a time course of 14 days detected over 450 genes that were regulated by cold treatment and were differentially regulated between spring and winter cultivars, of these 130 are signaling or regulatory gene candidates, including: transcription factors, protein kinases, ubiquitin ligases and GTP, RNA and calcium binding proteins. Dynamic changes in transcript levels were seen at all periods of cold acclimation in both cultivars. There was an initial burst of gene activity detectable during the first day of CA, during which 90% of all genes with increases in transcript levels became clearly detectable and early expression differential between the two cultivars became more disparate with each successive period of cold acclimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bottley A, Xia GM, Koebner RM (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906

    Article  PubMed  CAS  Google Scholar 

  • Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15:94–98

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O et al (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Kane NA, Breton G et al (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Immink RG, Kieffer M et al (2005) Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell 17:1424–1433

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  • Fowler DB, Limin AE, Shi-Ying Wang S-Y et al (1996) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42

    Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L et al (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  PubMed  CAS  Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340

    Article  PubMed  CAS  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z et al (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    PubMed  CAS  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  PubMed  CAS  Google Scholar 

  • Limin AE, Fowler DB (1985) Cold hardiness in Triticum and Agelops species. Can J Plant Sci 65:71–78

    Article  Google Scholar 

  • Martin ML, Busconi L (2001) A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol 125:1442–1449

    Article  PubMed  CAS  Google Scholar 

  • Monroy A, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7:321–331

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL et al (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Satou M et al (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6:212–234

    Article  PubMed  CAS  Google Scholar 

  • Prasil IT, Prasilova P, Pankova K (2004) Relationships among vernalization, shoot apex development and frost tolerance in wheat. Ann Bot 94:413–418

    Article  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J et al (2000) Over-expression of a single Ca2_-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al 2002 Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shin D, Koo YD, Lee J et al (2004) Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323:534–540

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R et al (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Fan JB et al (2004) Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101:3298–3303

    Article  PubMed  CAS  Google Scholar 

  • Simon RM, Dobbin K (2003) Experimental design of DNA microarray experiments. Biotechniques Mar Suppl:16–21

  • Simpson GG, Quesada V, Henderson IR et al (2004) RNA processing and Arabidopsis flowering time control. Biochem Soc Trans 32:565–566

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F (2005) Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. Plant Cell Physiol 46:884–891

    Article  PubMed  CAS  Google Scholar 

  • Umemura Y, Ishiduka T, Yamamoto R et al (2004) The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain. Plant J 37:741–749

    Article  PubMed  CAS  Google Scholar 

  • Vannini C, Locatelli F, Bracale M et al (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    Article  PubMed  CAS  Google Scholar 

  • Vogel JT, Zarka DG, van Buskirk HA et al (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Chaudhuri S, Yang L et al (2004) Calcium/calmodulin up-regulates a cytoplasmic receptor-like kinase in plants. J Biol Chem 279:42552–42559

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Shi H, Lee BH et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101:9873–9878

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Verslues PE, Zheng X et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA 102:9966–9971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Matt Links, Luke McCarthy, and Bill Crosby for assistance with bioinformatics for wheat EST sequences; Olin Anderson for cDNA clones used in the microarray construction, and Ian Ferguson for advice for statistical analysis. We thank Youko Oono, Motoaki Seki and Kazuo Shinozaki for providing gene expression data for Arabidopsis. We thank the Centre for Structural Genomics, Concordia University, for assistance in the preparation and printing of the microarray.

This work was supported by a Genome Canada, Genome Prairie, and Genome Quebec grant to P.J.G., G.J.S. and F.S. and by grants from the Natural Sciences and Engineering Council of Canada to P.J.G and F.S.

Antonio F. Monroy and Ani Dryanova contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Gulick.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroy, A.F., Dryanova, A., Malette, B. et al. Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64, 409–423 (2007). https://doi.org/10.1007/s11103-007-9161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9161-z

Keywords

Navigation