Skip to main content
Log in

Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Somatic embryogenesis is a notable illustration of plant totipotency and involves reprogramming of development in somatic cells toward the embryogenic pathway. Auxins are key components as their exogenous application recuperates the embryogenic potential of the mitotically quiescent somatic cells. In order to unravel the molecular basis of somatic embryogenesis, cDNA library was made from the regeneration proficient wheat leaf base segments treated with auxin. In total, 1440 clones were sequenced and among these 1,196 good quality sequences were assembled into 270 contigs and 425 were singletons. By reverse northern analysis, a total of 57 clones were found to be upregulated during somatic embryogenesis, 64 during 2,4-D treatment, and 170 were common to 2,4-D treatment and somatic embryogenesis. A substantial number of genes involved in hormone response, signal transduction cascades, defense, anti-oxidation, programmed cell death/senescence and cell division were identified and characterized partially. Analysis of data of select genes suggests that the induction phase of somatic embryogenesis is accompanied by the expression of genes that may also be involved in zygotic embryogenesis. The developmental reprogramming process may in fact involve multiple cellular pathways and unfolding of as yet unknown molecular events. Thus, an interaction network draft using bioinformatics and system biology strategy was constructed. The outcome of a systematic and comprehensive analysis of somatic embryogenesis associated interactome in a monocot leaf base system is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Harmon AC, Rao KS (2000) Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035–1043

    Article  PubMed  CAS  Google Scholar 

  • Ben C, Hewezi T, Jardinaud MF, Bena F, Ladouce N, Moretti S, Tamborindeguy C, Liboz T, Petitprez M, Gentzbittel L (2005) Comparative analysis of early embryonic sunflower cDNA libraries. Plant Mol Biol 57:255–270

    Article  PubMed  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Brandon HL, Fischer R, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Pro Natl Acad Sci USA 103:3468–3473

    Article  CAS  Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911

    Article  PubMed  CAS  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Davletova S, Meszaros T, Miskolczi P, Oberschall A, Torok K, Magyar Z, Dudits D, Deak M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  PubMed  CAS  Google Scholar 

  • Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  • Dudits D, Gyorgyey J, Bogre L, Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic publishers, Dordrecht, pp 267–308

    Google Scholar 

  • Du L, Chen Z (2000) Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J 24:837–47

    Article  PubMed  CAS  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca2+/ calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hiller L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fambrini M, Durante C, Cionini G, Geri C, Giorgetti L, Michelotti V, Salvini M, Pugliesi C (2006) Characterization of LEAFY COTYLEDON1-LIKE gene in Helianthus annuus and its relationship with zygotic and somatic embryogenesis. Dev Genes Evol 216:253–264

    Article  PubMed  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  PubMed  CAS  Google Scholar 

  • Galland R, Randoux B, Vasseur J, Hilbert JL (2001) A glutathione S-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    PubMed  CAS  Google Scholar 

  • Giroux RW, Pauls KP (1997) Characterization of somatic embryogenesis-related cDNAs from alfalfa (Medicago sativa L.). Plant Mol Biol 33:393–404

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones, Elsevier, Amsterdam, The Netherlands, pp 423–459

    Chapter  Google Scholar 

  • Harada H, Kiyosue T, Kamada H, Kobayashi K (1990) Stress induced carrot somatic embryogenesis and their application to synthetic seeds. In: Sangwan RS, Sangwan-Norreel BS (eds) The impact of biotechnology in agriculture, Kluwer Academic Publishers, Dordrecht, pp 129–157

    Google Scholar 

  • Hecht V, Vielle-Calzada J-P, Hartog MV, Schimdt Ed DL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expessed in developing ovules and embryos and enhances embryogenic competence in cultures. Plant Physiol 127:803–816

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic embryogenesis in carrot and Arabidopsis. Plant Biotech 23:153–161

    CAS  Google Scholar 

  • Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006a) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006b) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006c) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88:360–371

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Booij H, Schel JHN, de Vries SC (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep 9:221–223

    Article  CAS  Google Scholar 

  • Joo S, Park KY, Kim WT (2004) Light differentially regulates the expression of two members of the auxin-induced 1-amino cyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.) seedlings. Planta 218:976–988

    Article  PubMed  CAS  Google Scholar 

  • Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol 25:1163–1166

    Article  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    CAS  Google Scholar 

  • Kamada H, Tachikawa Y, Saitou T, Harada H (1994) Heat stress induction of carrot somatic embryogenesis. Plant Tissue Cult Lett 11:229–232

    Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2005) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Kamada H, Harada H (1989a) Induction of somatic embryogenesis from carrot seeds by hypochlorite treatment. Plant Tissue Cult Lett 6:138–143

    Google Scholar 

  • Kiyosue T, Kamada H, Harada H (1989b) Induction of somatic embryogenesis by salt stress in carrot. Plant Tissue Cult Lett 6:162–164

    Google Scholar 

  • Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68:2021–2033

    Article  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Li HC, Chuang K, Henderson JT, Rider SD Jr., Bai Y, Zhang H, Fountain M, Gerber J, Ogas J (2005) PICKLE acts during germination to repress expression of embryonic traits. Plant J 44:1010–1022

    Article  PubMed  CAS  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    PubMed  CAS  Google Scholar 

  • Li S, Xing GM, Cui KR, Yu CH, Zhang X, Xu HX, Wang YF (2003) Ultracytochemical localization of calcium and ATPase activity on the 2,4-D induced somatic embryogenesis of Lycium barbarum L. Shi Yan Sheng Wu Xue Bao 36:414–420

    PubMed  CAS  Google Scholar 

  • Lin X, Hwang GJ, Zimmerman JL (1996) Isolation and characterization of a diverse set of genes from carrot somatic embryos. Plant Physiol 112:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Mahalakshmi A, Khurana JP, Khurana P (2003) Rapid induction of somatic embryogenesis by 2,4-D in leaf base cultures of wheat (Triticum aestivum L.). Plant Biotech 20:267–273

    CAS  Google Scholar 

  • Mahalakshmi A, Singla B, Khurana JP, Khurana P (2007) Role of calcium-calmodulin in auxin-induced somatic embryogenesis in leaf base cultures of wheat (Triticum aestivum var. HD 2329). Plant Cell Tiss Org Cult 88: 167–174

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The function and regulation of glutathione-S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  PubMed  CAS  Google Scholar 

  • Maraschin SF, Priester W, Spaink HP, Wang M (2005) Androgenetic switch an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992a) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103

    Article  CAS  Google Scholar 

  • Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992b) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Mordhost AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Google Scholar 

  • Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    PubMed  CAS  Google Scholar 

  • Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K, Nozaki H, Asami T, Yoshida S, Fujioka S (2006) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Saeed NA, Rose RJ (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Komamine A (1995) Physiologicl and biochemical aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants, Kluwer Academic Publishers, Dordrecht, pp 249–266

    Google Scholar 

  • Ogas J, Cheng JC, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Kaufmann S, Handerson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  PubMed  CAS  Google Scholar 

  • Ogata Y, Iizuka M, Nakayama D, Ikeda M, Kamada H, Koshiba T (2005) Possible involvent of abscisic acid in the induction of secondary somatic embryogenesis on seed coat-derived carrot somatic embryos. Planta 221:417–423

    Article  PubMed  CAS  Google Scholar 

  • Overvoorde PI, Grimes HD (1994) The role of calcium and calmodulin in carrot somatic embryo. Plant Cell Physiol 35:135–144

    CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  PubMed  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Patnaik D, Khurana P (2005) Identification of a phosphoprotein expressed during somatic embryogenesis in wheat leaf base cultures. J Plant Biochem Biotech 14:149–154

    CAS  Google Scholar 

  • Pfeiffer W, Hoftberger M (2001) Oxidative burst in Chenopodium rubrum suspension cells: induction by auxin and osmotic changes. Plant Physiol 3:144–150

    Google Scholar 

  • Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Quint M, Gary WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  PubMed  CAS  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86:285–301

    Article  Google Scholar 

  • Raghavan V (2006) Can carrot and Arabidopsis serve as model systems to study the molecular biology of somatic embryogenesis? Curr Sci 90:1336–1343

    CAS  Google Scholar 

  • Rani AR, Reddy VD, Prakash Babu P, Padmaja G (2005) Changes in protein profiles associated with somatic embryogenesis in peanut. Biol Plant 49:347–354

    Article  CAS  Google Scholar 

  • Rensing SA, Daniel L, Schumann, Reski R, Hohe A (2005) EST sequencing from embryogenic Cyclamen persicum cell cultures identifies a high proportion of transcripts homologous to plant genes involved in somatic embryogenesis. J Plant Growth Regu 24:102–115

    Article  CAS  Google Scholar 

  • Saito Y, Yamasaki S, Fujii N, Takahashi H (2005) Possible involvement of CS-ACS1 and ethylene in auxin-induced peg formation of cucumber seedlings. Ann Bot (Lond) 95:413–422

    Article  CAS  Google Scholar 

  • Sallandrouze A, Faurobert M, El Maataoui M, Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embyrogenesis in Cupressus sempervirens L. Electrophoresis 20:1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Santarem ER, Pelissier B, Finer JJ (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol 33:13–19

    Article  CAS  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Singla B, Chugh A, Khurana JP, Khurana P (2006) An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot 57:4059–4070

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena ED, Fukuoka H, Joosen R, Lambalk J, Angenent G, Scorza R, Custers JB, Boutilier K (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351

    Article  PubMed  CAS  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu TM, Van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, Von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Sung ZR, Okimoto R (1983) Coordinate gene expression during somatic embryogenesis in carrots. Proc Natl Acad Sci USA 80:2661–2665

    Article  PubMed  CAS  Google Scholar 

  • Tahir M, Law DA, Stasolla C (2006) Molecular characterization of PgAGO, a novel conifer gene of the Argonaute family expressed in apical cells and required for somatic embryo development in spruce. Tree Physiol 26:1257–1270

    PubMed  CAS  Google Scholar 

  • Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577–583

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42

    Article  PubMed  CAS  Google Scholar 

  • Timmers ACJ, De Vries SC, Schel JHN (1989) Distribution of membrane-bound calcium and activated calmodulin during somatic embryogenesis of carrot (Daucus carota L.). Protoplasma 153:24–29

    Article  Google Scholar 

  • van der Kop DA, Schuyer M, Pinas JE, van der Zaal BJ, Hooykaas PJ (1999) Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene. Plant Mol Biol 39:979–990

    Article  PubMed  Google Scholar 

  • van der Kop DA, Schuyer M, Scheres B, van der Zaal BJ, Hooykaas PJ (1996) Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana. Plant Mol Biol 30:839–844

    Article  PubMed  Google Scholar 

  • Verdus M-C, Dubois T, Dubois J, Vasseur J (1993) Ultrastructural changes in leaves of Cichorium during somatic embryogenesis. Ann Bot 72:375–383

    Article  Google Scholar 

  • Winkelmann T, Heintz D, Van Dorsselaer A, Serek M, Braun HP (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B. (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735

    Article  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed  Google Scholar 

  • Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr V Ravi for helping with the sequencing of the genes and assembly and thank Ms Rashmi Jain for helping with the in silico analysis. BS acknowledges the award of Senior Research Fellowship from the University Grants Commission (UGC), New Delhi. This research work was financially supported by the Department of Biotechnology, Government of India, and the UGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2007_9234_MOESM1_ESM.ppt

Magnified version of the rare cold inducible protein, which is the second major regulator in the molecular network (PPT 650 KB)

Magnified version of the cytochrome P450, which is the third major regulator in the molecular network (PPT 802 KB)

The annotated ESTs for the 270 contigs (XLS 49 KB)

The annotated ESTs of 425 singletons (XLS 85 KB)

11103_2007_9234_MOESM5_ESM.xls

Proteins encoded by differentially expressed genes and their expression profile under three experimental conditions shown in Fig. 1, namely, control (A), 2,4-D 24 h (B) and SE (C). Color mark shows expression in a particular stage (XLS 147 KB)

List of the down-regulated ESTs (XLS 21 KB)

11103_2007_9234_MOESM7_ESM.xls

Some representative genes in the putative molecular interaction network draft during somatic embryogenesis in the wheat leaf base system (XLS 202 KB)

Some representative nodes in the putative molecular network draft during SE in wheat leaf base system (XLS 26 KB)

Some representative nodes in the glutathione-S-transferase pathway (XLS 16 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla, B., Tyagi, A.K., Khurana, J.P. et al. Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Mol Biol 65, 677–692 (2007). https://doi.org/10.1007/s11103-007-9234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9234-z

Keywords

Navigation