Skip to main content
Log in

Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Gain-of-function studies have shown that ectopic expression of the BABY BOOM (BBM) AP2/ERF domain transcription factor is sufficient to induce spontaneous somatic embryogenesis in Arabidopsis (Arabidopsis thaliana (L.) Heynh) and Brassica napus (B. napus L.) seedlings. Here we examined the effect of ectopic BBM expression on the development and regenerative capacity of tobacco (Nicotiana tabacum L.) through heterologous expression of Arabidopsis and B. napus BBM genes. 35S::BBM tobacco lines exhibited a number of the phenotypes previously observed in 35S::BBM Arabidopsis and B. napus transgenics, including callus formation, leaf rumpling, and sterility, but they did not undergo spontaneous somatic embryogenesis. 35S::BBM plants with severe ectopic expression phenotypes could not be assessed for enhanced regeneration at the seedling stage due to complete male and female sterility of the primary transformants, therefore fertile BBM ectopic expression lines with strong misexpression phenotypes were generated by expressing a steroid-inducible, post-translationally controlled BBM fusion protein (BBM:GR) under the control of a 35S promoter. These lines exhibited spontaneous shoot and root formation, while somatic embryogenesis could be induced from in-vitro germinated seedling hypocotyls cultured on media supplemented with cytokinin. Together these results suggest that ectopic BBM expression in transgenic tobacco also activates cell proliferation pathways, but differences exist between Arabidopsis/B. napus and N. tabacum with respect to their competence to respond to the BBM signalling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DEX:

Dexamethasone

BAP N6 :

Benzylaminopurine

NAA:

Napthaleneacetic acid

TDZ:

Thidiazuron (N-phenyl-N′-1,2,3,-thiadiazol-5-ylurea)

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

References

  • Aida M, Beis D, Heldstra R, Willemsen V, Billou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Sheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu Q-W, Chua N-H (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Le BH, Fischer RL, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci USA 103:3469–3473

    Article  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet. Genes Dev 12:1145–1154

    PubMed  CAS  Google Scholar 

  • Eklöf S, Åstot C, Sitbon F, Moritz T, Olsson O, Sandberg G (2000) Transgenic tobacco plants co-expressing Agrobacterium iaa and ipt genes have wild-type hormone levels but display both auxin- and cytokinin-overproducing phenotypes. Plant J 23:279–284

    Article  PubMed  Google Scholar 

  • Elliot RC, Betzner AS, Huttner E, Oakes M, Tucker WQJ, Gerentes D, Parez P, Smith DR (1996) AINTEGUMENTA, an APETALA-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  Google Scholar 

  • Frugis G, Giannino D, Mele G, Nicolodi C, Chiappetta A, Bitonti MB, Innocenti AM, Dewitte W, Van Onckelen H, Mariotti D (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lamaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988

    Article  PubMed  CAS  Google Scholar 

  • Gill R, Saxena PK (1993) Somatic embryogenesis in Nicotiana tabacum L: induction by thidiazuron of direct embryo differentiation from cultured leaf discs. Plant Cell Reports 12:154–159

    Article  Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Hewelt A, Prinsen E, Schell J, Van Onckelen H, Schmülling T (1994) Promoter tagging with a promoterless ipt gene leads to cytokinin-induced phenotypic variability in transgenic tobacco plants: implications of gene dosage effects. Plant J 6:879–891

    Article  PubMed  CAS  Google Scholar 

  • Hewelt AE, Prinsen E, Thomas M, van Onckelen H, Meins F (2000) Ectopic expression of maize knotted 1 results in the cytokinin-autotropic growth of cultured tobacco tissues. Planta 210:884–889

    Article  PubMed  CAS  Google Scholar 

  • Hörsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  Google Scholar 

  • Jofuku KD, De Boer BGW, van Montagu M, Okamura JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 9:1211–1225

    Article  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    Article  PubMed  CAS  Google Scholar 

  • Kano-Murakami Y, Yanai T, Tagiri A, Matsuoka M (1993) A rice homeotic gene, OSH1, causes unusual phenotypes in transgenic tobacco. FEBS Lett 334:365–368

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925

    Article  PubMed  CAS  Google Scholar 

  • Ogas J, Cheng J-C, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94

    Article  PubMed  CAS  Google Scholar 

  • Okamura JK, Caster B, Villaroel R, van Montagu M, Jofuku KD (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  Google Scholar 

  • Postma-Haarsma AD, Verwoert IIGS, Stronk OP, Koster J, Lamers GEM, Hoge JHC, Meijer AH (1999) Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis. Plant Mol Biol 39:257–271

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abes H, Shinozak K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the AP2/ERF domain of Arabidopsis DREBs transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Sentoku N, Nagato Y, Matsuoka M (1998) Isolation and characterization of a rice homeobox gene, OSH15. Plant Mol Biol 38:983–998

    Article  PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RF, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    PubMed  CAS  Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88:10421–10425

    Article  PubMed  CAS  Google Scholar 

  • Sitbon F, Hennion S, Sundberg B, Little CHA, Olsson O, Sandberg G (1992) Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaaH genes display altered growth and indole acetic acid metabolism. Plant Physiol 99:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 54:118–130

    PubMed  CAS  Google Scholar 

  • Smigocki A, Owens LD (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85:5131–5135

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan C, Padilla IMG, Scorza R (2005) Prunus spp In: Litz RE (ed) Biotechnology of fruit and nut trees. CAB International, London, pp 512–542

    Google Scholar 

  • Stolarz A, Macewicz J, Lorz H (1991) Direct somatic embryogenesis and plant regeneration from leaf explants of Nicotiana tabacum L. J Plant Physiol 137:347–357

    CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fisher RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON 2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Kusaba S, Kano-Murakami Y, Mutsuoka M (1997) Ectopic expression of tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol 38:917–927

    PubMed  CAS  Google Scholar 

  • Thorpe TA (2000) Somatic embryogenesis–morphogenesis, physiology biochemistry and molecular biology. Korean J Plant Tiss Cult 27:245–258

    Google Scholar 

  • van der Graaff E, Den Dulk-Ras A, Hooykaas PJJ, Keller B (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971–4980

    PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Schöffl F (2003) Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J Exp Bot 54:2343–2349

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Remko Offringa (University of Leiden, The Netherlands) for comments on the manuscript, Kevin Webb (USDA ARS Appalachian Fruit Research Station, Kearneysville, WV, USA) for molecular analyses, David L Bentley (Imaging Facility, The University of Arizona, Tucson, Arizona, USA) for the microscopy studies and Ahn Liseon Silverstein, Mark Demuth and Dennis Bennett (USDA ARS Appalachian Fruit Research Station) for technical assistance. E.D.J.S. was supported by fellowships from the Biotechnology Research Indonesia-Netherlands (BIORIN) research program with financial aid from the Royal Netherlands Academy of Arts and Sciences (KNAW), and the Bogor Agricultural University fellowship program, Quality for Undergraduate Education (QUE) project. H.F. was supported by a fellowship from the Science and Technology Agency of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnathambi Srinivasan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, C., Liu, Z., Heidmann, I. et al. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225, 341–351 (2007). https://doi.org/10.1007/s00425-006-0358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0358-1

Keywords

Navigation