Skip to main content
Log in

Role of calcium–calmodulin in auxin-induced somatic embryogenesis in leaf base cultures of wheat (Triticum aestivum var. HD 2329)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Wheat leaf bases cultured for 1 day on 2,4-d (10 μM) display the induction of somatic embryogenesis. The induction of somatic embryogenesis by 2,4-d appears to be calcium-mediated as treatment of leaf bases with the calcium chelator, EGTA, prior to 2,4-d treatment, inhibited the induction of somatic embryogenesis. This sensitivity of auxin to reduced calcium levels can be reversed by calcium ions alone and not any other divalent cation like magnesium or zinc. Additionally, the expression of the three calcium-regulated genes, Triticum aestivum calmodulin binding protein kinase, calcium-dependent protein kinase, and putative calcium binding protein was analyzed in wheat leaf bases which suggest a specific role for Ca2+ in somatic embryogenesis. Application of the calcium ionophore, A23187, either alone or along with 2,4-d, induced somatic embryogenesis. This specificity for calcium was verified both by treatment with the calcium antagonist TMB8, and the elimination of calcium from the medium, resulting in reduction of somatic embryogenesis by 80%. Treatment with calcium channel blockers like verapamil and nifedipine, calcium antagonist, lanthanum, and calmodulin inhibitors chlorpromazine and fluphenazine, prior to the 2,4-d treatment, inhibited induction of somatic embryogenesis. The present study thus provides evidence for the involvement of calcium–calmodulin in the stimulus–response coupling of auxin-induced somatic embryogenesis in wheat leaf base system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251:533–549

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    CAS  Google Scholar 

  • Bhatla SC, Haschke HP, Hartmann E (2003) Distribution of activated calmodulin in the chloronema tip cells of the moss Funaria hygrometrica. J Plant Physiol 160:469–474

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Stone SL, Park S, Bui AQ, Brandon HL, Fischer R, Goldberg RB, Harada JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci 103:3468–3473

    Article  PubMed  CAS  Google Scholar 

  • Brummell DA, Maclachlan GA (1989) Calcium antagonist TMB-8 inhibits cell wall formation and growth in pea. J Exp Bot 40:559–565

    Article  CAS  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Cohen JD, Nadler KD (1976) Calcium requirements for indoleacetic acid-induced acidification by Avena coleoptiles. Plant Physiol 57:347–350

    PubMed  CAS  Google Scholar 

  • Cunninghame ME, Hall JL (1986) The effect of calcium antagonists and inhibitors of secretory processes on auxin-induced elongation and fine structure of Pisum sativum stem segments. Protoplasma 133:149–159

    Article  CAS  Google Scholar 

  • Davletava S, Meszaros T, Miskolczi P, Obersschall A, Torok K, Magyar Z, Dudits D, Deak M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745

    Article  PubMed  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  CAS  Google Scholar 

  • Gaj MD, Zhang S, Harada JJ, Lemaux G (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta [Epub]

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hepler PK (1988) Calcium and development. In: Koeltz, Gruelter W, Zimmer B (eds) Proceedings of XIV international botanical congress, Konigstein/Taunus, pp 225–240

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36:397–439

    Article  CAS  Google Scholar 

  • Huang ML, Cangelosi GA, Halperin W, Nester EW (1990) A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 172:1814–1822

    PubMed  CAS  Google Scholar 

  • Hush JM, Overall RI, Newman IA (1991) A calcium influx precedes organogenesis in Graptopetalum. Plant Cell Environ 14:657–665

    Article  CAS  Google Scholar 

  • Jackson CL, Cassanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10:60–67

    Article  PubMed  CAS  Google Scholar 

  • Jansen MAK, Booij H, Schell JHN, De Vries SC (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep 9:221–223

    Article  CAS  Google Scholar 

  • Li S, Xing GM, Cui KR, Yu CH, Zhang X, Xu HX, Wang YF (2003) Ultracytochemical localization of calcium and ATPase activity on the 2,4-d induced somatic embryogenesis of Lycium barbarum L. Shi Yan Sheng Wu Xue Bao 36:414–420 (in Chinese)

    PubMed  CAS  Google Scholar 

  • Mahalakshmi A, Khurana JP, Khurana P (2003) Rapid induction of somatic embryogenesis by 2,4-d in leaf base cultures of wheat (Triticum aestivum L). Plant Biotechnol 20:267–273

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muto S (1982) Distribution of calmodulin within wheat leaf cells. FEBS Lett 147:161–164

    Article  CAS  Google Scholar 

  • Nagy F, Schafer E (2000) Nuclear and cytosolic events of light-induced, phytochrome-regulated signaling in higher plants. EMBO J 19:157–163

    Article  PubMed  CAS  Google Scholar 

  • Nomura K (1987) Mechanisms of somatic embryogenesis in carrot suspension cultures. Ph.D. thesis, University of Tokyo, Japan

  • Overvoorde PI, Grimes HD (1994) The role of calcium and calmodulin in carrot somatic embryo. Plant Cell Physiol 35:135–144

    CAS  Google Scholar 

  • Patnaik D, Khurana P (2005) Identification of a phosphoprotein expressed during somatic embryogenesis in wheat leaf base cultures. J Plant Biochem Biotechnol 14:149–154

    CAS  Google Scholar 

  • Pfluger J, Zambryski P (2004) The role of SUESS in auxin response and floral organ pattering. Development 131:4697–4707

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN (1987) Calcium messenger system in plants. CRC Crit Rev Plant Sci 6:47–103

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN (1993) Calcium and signal transduction in plants. CRC Crit Rev Plant Sci 12:185–211

    PubMed  CAS  Google Scholar 

  • Quint M, Gary WM (2006) Auxin signaling. Curr Opin Plant Biol. DOI 10.1016/j.pbi.2006.07.006

  • Raghothama KG, Mizrah IY, Poovaiah BW (1985) Effect of calmodulin antagonists on auxin-dependent elongation. Plant Physiol 79:28–33

    PubMed  CAS  Google Scholar 

  • Reddy VS, Ali GS, Reddy ASN (2002) Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J 368:145–157

    Article  Google Scholar 

  • Sanders D, Pelloux J, Brouwnlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell (Suppl.)14:S401–S417

    Google Scholar 

  • Singla B, Khurana JP, Khurana P (2006) An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot. DOI 10.1093/jxb/erl182

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto S, Harada H (1986) Involvement of calcium in adventitious bud initiation in Torenia stem segments. Plant Cell Physiol 27:1–10

    CAS  Google Scholar 

  • Timmers ACJ, Schel JHN (1990) Immunocytochemical localization of calmodulin during carrot somatic embryogenesis. In: Nijkamp HJJ, Van der Plas LHW, Van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 443–448

    Google Scholar 

  • Timmers ACJ, De Vries SC, Schel JHN (1989) Distribution of membrane-bound calcium and activated calmodulin during somatic embryogenesis of carrot (Daucus carota L.). Protoplasma 153:24–29

    Article  Google Scholar 

  • Trewavas AJ, Malho R (1998) Ca2+ signaling in plant cells: the big network! Curr Opin Plant Biol 1:428–433

    Article  PubMed  CAS  Google Scholar 

  • Xie QG, Wang W, Liang S, Lu Y (2002) Characterization of a calmodulin-binding protein kinase from Arabidopsis thaliana. Chin Sci Bull 47:1650–1655

    Article  Google Scholar 

  • Xing GM, Jing RF, Li S, Zhang X, Xu HX, Cui KR, Yu CH, Wang YF (2004) Role of exogenous calcium in the somatic embryogenesis of Lycium barbarum L. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30:261–268

    PubMed  CAS  Google Scholar 

  • Zhang L, Lu Y-T (2003) Calmodulin-binding protein kinases in plants. Trends Plant Sci 8:123–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AM and BS acknowledges the award of Senior Research Fellowship from the University of Grants Commission (UGC), New Delhi. This work was financially supported by the Department of Biotechnology, Government of India and the UGC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Khurana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahalakshmi, A., Singla, B., Khurana, J.P. et al. Role of calcium–calmodulin in auxin-induced somatic embryogenesis in leaf base cultures of wheat (Triticum aestivum var. HD 2329). Plant Cell Tiss Organ Cult 88, 167–174 (2007). https://doi.org/10.1007/s11240-006-9186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9186-z

Keywords

Navigation