Skip to main content
Log in

The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Medicago truncatula, a model for legume genomics, can be regenerated by somatic embryogensis by the use of a suitable genotype and an auxin plus cytokinin. The stress response induced by explant wounding and culture is increasingly recognized as an important component of somatic embryo induction. We have cloned and investigated the stress kinase gene MtSK1 in relation to somatic embryogenesis in M. truncatula, using the highly embryogenic mutant Jemalong 2HA (2HA) and its progenitor Jemalong. The main features of the MtSK1 protein of 351 amino acids are an N-terminal kinase domain and a C-terminal glutamic acid-rich region, which is predicted to be a coiled-coil. MtSK1 is a member of the SnRK2 subgroup of the SnRK group of plant kinases. Members of the SnRK2 kinases play a role in stress responses of plants. MtSKI expression is induced by wounding in the cultured tissue independent of auxin or cytokinin. However, in both 2HA and Jemalong, as the callus develops in response to auxin plus cytokinin, MtSK1 expression continues to increase. MtSK1 responds to salt stress in vivo, consistent with its role as a stress kinase. The likely role of MtSK1 in stress-induced signaling will facilitate the relating of stress–response pathways to auxin and cytokinin-induced signaling in the understanding of the molecular mechanisms involved in the induction of somatic embryogenesis in M. truncatula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. PNAS 89:10183–10187

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Bonetta D, McCourt P (1998) Genetic analysis of ABA signal transduction pathways. Trends Plant Sci 3:231–235

    Article  Google Scholar 

  • Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: A highly versatile protein folding motif. Trends Cell Biol 11:82–88

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, Larsonneau C, Marmouget C, Huguet T (1996) Transformation of Barrel Medic (Medicago truncatula Gaertn) By Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the Mtenod12 nodulin promoter fused to the Gus reporter gene. Plant Cell Rep 15:305–310

    Article  CAS  Google Scholar 

  • das Neves LO, Duque SRL, de Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M-truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Frugoli J, Harris J (2001) Medicago truncatula on the move! Plant Cell 13:458–463

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Hardie DG (1998) SNF1-related protein kinases: Global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y (2003) Metabolic signalling and carbon partitioning: Role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54:467–475

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Hunter T (1995) The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    PubMed  CAS  Google Scholar 

  • Hardie DG (1999) Plant protein serine threonine kinases: Classification and functions. Annu Rev Plant Physiol Plant Molec Biol 50:97–131

    Article  CAS  Google Scholar 

  • Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219

    Article  PubMed  CAS  Google Scholar 

  • Holappa LD, Walker-Simmons MK (1995) The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress. Plant Physiol 108:1203–1210

    PubMed  CAS  Google Scholar 

  • Holappa LD, Walker-Simmons MK (1997) The wheat protein kinase gene, TaPK3, of the PKABA1 subfamily is differentially regulated in greening wheat seedlings. Plant Mol Biol 33:935–941

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Dickmann LJ, Satterlee JS, Sussman MR (1996) Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol Biol 31:405–412

    Article  PubMed  CAS  Google Scholar 

  • Iantcheva A, Vlahova M, Trinh TH, Brown SC, Slater A, Elliot MC, Atanassov A (2001) Assessment of polysomaty, embryo formation and regeneration in liquid media for various species of diploid annual Medicago. Plant Sci 160:621–627

    Article  PubMed  CAS  Google Scholar 

  • Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang X-D, Rose RJ, Rolfe BG (2004) Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 4:1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Plant Physiol 137:1250–1260

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    CAS  Google Scholar 

  • Kamada H, Tachikawa Y, Saitou T, Harada H (1994) Heat stresses induction of carrot somatic embryogenesis. Plant Tissue Cult Lett 11:229–232

    Google Scholar 

  • Kiyosue T, Kamada H, Harada H (1989) Induction of somatic embryogenesis by salt stress in carrot. Plant Tissue Cult Lett 6:162–164

    Google Scholar 

  • Laurie S, Halford NG (2001) The role of protein kinases in the regulation of plant growth and development. Plant Growth Regul 34:253–265

    Article  CAS  Google Scholar 

  • Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415

    Article  CAS  Google Scholar 

  • Lupas A (1996) Coiled coils: New structures and new functions. Trends Biochem Sci 21:375–382

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Vandyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12:165–178

    Article  PubMed  CAS  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Rose RJ (1998) Plant regeneration from cultured Medicago truncatula with particular reference to abscisic acid and light treatments. Aust J Bot 46:151–160

    Article  CAS  Google Scholar 

  • Nolan KE, Rose RJ, Gorst JE (1989) Regeneration of Medicago truncatula from tissue culture: increased somatic embryogenesis from regenerated plants. Plant Cell Rep 8:278–281

    Article  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Park YS, Hong SW, Oh SA, Kwak JM, Lee HH, Nam HG (1993) Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains. Plant Mol Biol 22:615–624

    Article  PubMed  CAS  Google Scholar 

  • Quatrano RS, Bartels D, Ho THD, Pages M (1997) New insights into ABA-mediated processes. Plant Cell 9:470–475

    Article  CAS  Google Scholar 

  • Rose RJ (2004) Somatic embryogenesis in plants. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker Inc., New York, pp 1165–1168

    Google Scholar 

  • Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula—Implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791

    CAS  Google Scholar 

  • Schafleitner R, Wilhelm E (2002) Isolation of wound inducible genes from Castanea sativa stems and expression analysis in the bark tissue. Plant Physiol Biochem 40:235–245

    Article  CAS  Google Scholar 

  • Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    Article  PubMed  CAS  Google Scholar 

  • Thompson MR, Johnson LB, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Touraev A, Vicente O, Heberlebors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Yoon HW, Kim MC, Shin PG, Kim JS, Kim CY, Lee SY, Hwang I, Bahk JD, Hong JC, Han C, Cho MJ (1997) Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet 255:359–371

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Thomas Kaiser of Corbett Research for his assistance with Real Time PCR and Professor Barry Rolfe (Australian National University, Canberra) for helpful discussions. This work was supported by an Australian Research Council Centre of Excellence grant to the University of Newcastle node of the Centre of Excellence for Integrative Legume Research (to RJR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray J. Rose.

Additional information

Communicated by P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolan, K.E., Saeed, N.A. & Rose, R.J. The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25, 711–722 (2006). https://doi.org/10.1007/s00299-006-0135-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0135-4

Keywords

Navigation