Skip to main content

Advertisement

Log in

Drugs and HPA axis

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

This paper outlines the interferences of the most widely used drugs with hypothalamo-pituitary-adrenal function and the related laboratory parameters, with the purpose of providing practical help to clinicians during testing for hypo- or hypercortisolemic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afandi B, Toumeh MS, Saadi HF (2003) Cushing’s syndrome caused by unsupervised use of ocular glucocorticoids. Endocr Pract 9:526–529

    PubMed  Google Scholar 

  2. Chiang MY, Sarkar M, Koppens JM, Milles J, Shah P (2006) Exogenous Cushing’s syndrome and topical ocular steroids. Eye 20:725–727. doi:10.1038/sj.eye.6701956

    Article  PubMed  Google Scholar 

  3. Pessanha TM, Campos JM, Barros AC, Pone MV, Garrido JR, Pone SM (2007) Iatrogenic Cushing’s syndrome in a adolescent with AIDS on ritonavir and inhaled fluticasone. Case report and literature review. AIDS 21(4):529–532

    Article  PubMed  Google Scholar 

  4. Main KM, Skov M, Sillesen IB et al (2002) Cushing’s syndrome due to pharmacological interaction in a cystic fibrosis patient. Acta Paediatr 91:1008–1011. doi:10.1080/080352502760272759

    Article  PubMed  CAS  Google Scholar 

  5. De Wachter E, Malfroot A, De Schutter I, Vanbesien J, De Schepper J (2003) Inhaled budesonide induced Cushing’s syndrome in cystic fibrosis patients, due to drug inhibition of cytochrome P450. J Cyst Fibros 2:72–75. doi:10.1016/S1569-1993(03)00022-5

    Article  PubMed  CAS  Google Scholar 

  6. Bolland MJ, Bagg W, Thomas MG, Lucas JA, Ticehurst R, Black PN (2004) Cushing’s syndrome due to interaction between inhaled corticosteroids and itraconazole. Ann Pharmacother 38:46–49. doi:10.1345/aph.1D222

    Article  PubMed  Google Scholar 

  7. Halverstam CP, Vachharajani A, Mallory SB (2007) Cushing syndrome from percutaneous absorption of 1% hydrocortisone ointment in Netherton syndrome. Pediatr Dermatol 24:42–45

    PubMed  Google Scholar 

  8. Ermis B, Ors R, Tastekin A, Ozkan B (2003) Cushing’s syndrome secondary to topical corticosteroids abuse. Clin Endocrinol (Oxf) 58:795–796. doi:10.1046/j.1365-2265.2003.18021.x

    Article  Google Scholar 

  9. Abma EM, Blanken R, De Heide LJ (2002) Cushing’s syndrome caused by topical steroid therapy for psoriasis. Neth J Med 60:148–150

    PubMed  CAS  Google Scholar 

  10. Hopkins RL, Leinung MC (2005) Exogenous Cushing’s syndrome and glucocorticoid withdrawal. Endocrinol Metab Clin North Am 34:371–384. doi:10.1016/j.ecl.2005.01.013

    Article  PubMed  CAS  Google Scholar 

  11. Güven A, Gülümser O, Ozgen T (2007) Cushing’s syndrome and adrenocortical insufficiency caused by topical steroids: misuse or abuse? J Pediatr Endocrinol Metab 20:1173–1182

    PubMed  Google Scholar 

  12. Loli P, Berselli ME, Tagliaferri M (1986) Use of ketoconazole in the treatment of Cushing’s syndrome. J Clin Endocrinol Metab 63:1365–1371

    PubMed  CAS  Google Scholar 

  13. Mistraletti G, Donatelli F, Carli F (2005) Metabolic and endocrine effects of sedative agents. Curr Opin Crit Care 11:312–317. doi:10.1097/01.ccx.0000166397.50517.1f

    Article  PubMed  Google Scholar 

  14. Absalom A, Pledger D, Kong A (1999) Adrenocortical function in critically ill patients 24 h after a single dose of etomidate. Anaesthesia 54:861–867. doi:10.1046/j.1365-2044.1999.01003.x

    Article  PubMed  CAS  Google Scholar 

  15. Bertagna X, Escourolle H, Pinquier JL et al (1994) Administration of RU 486 for 8 days in normal volunteers: antiglucocorticoid effect with no evidence of peripheral cortisol deprivation. J Clin Endocrinol Metab 78:375–380. doi:10.1210/jc.78.2.375

    Article  PubMed  CAS  Google Scholar 

  16. Flores BH, Kenna H, Keller J, Solvason HB, Schatzberg AF (2006) Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology 31:628–636. doi:10.1038/sj.npp.1300884

    Article  PubMed  CAS  Google Scholar 

  17. Pomara N, Hernando RT, de la Pena CB, Sidtis JJ, Cooper TB, Ferris S (2006) The effect of mifepristone (RU 486) on plasma cortisol in Alzheimer’s disease. Neurochem Res 31:585–588. doi:10.1007/s11064-006-9055-5

    Article  PubMed  CAS  Google Scholar 

  18. Heikinheimo O, Ranta S, Grunberg S, Lähteenmäki P, Spitz IM (1997) Alterations in the pituitary-thyroid and pituitary-adrenal axes – consequences of long-term mifepristone treatment. Metabolism 46:292–296. doi:10.1016/S0026-0495(97)90256-0

    Article  PubMed  CAS  Google Scholar 

  19. Díez JJ, Iglesias P (2007) Pharmacological therapy of Cushing’s syndrome: drugs and indications. Mini Rev Med Chem 7:467–480. doi:10.2174/138955707780619653

    Article  PubMed  Google Scholar 

  20. Steptoe A, Ussher M (2006) Smoking, cortisol and nicotine. Int J Psychophysiol 59:228–235. doi:10.1016/j.ijpsycho.2005.10.011

    Article  PubMed  Google Scholar 

  21. Coccaro EF, Kavoussi RJ, Cooper TB, Hauger RL (1996) Hormonal responses to d- and d,l-fenfluramine in healthy human subjects. Neuropsychopharmacology 15:595–607. doi:10.1016/S0893-133X(96)00133-9

    Article  PubMed  CAS  Google Scholar 

  22. Schurmeyer TH, Brademann G, von zur Muhlen A (1996) Effect of fenfluramine on episodic ACTH and cortisol secretion. Clin Endocrinol (Oxf) 45:39–45. doi:10.1111/j.1365-2265.1996.tb02058.x

    Article  CAS  Google Scholar 

  23. Cleare AJ, Forsling M, Bond AJ (1998) Neuroendocrine and hypothermic effects of 5-HT1A receptor stimulation with ipsapirone in healthy men: a placebo-controlled study. Int Clin Psychopharmacol 13:23–32. doi:10.1097/00004850-199801000-00004

    Article  PubMed  CAS  Google Scholar 

  24. Meltzer HY, Maes M (1994) Effects of buspirone on plasma prolactin and cortisol levels in major depressed and normal subjects. Biol Psychiatry 35:316–323. doi:10.1016/0006-3223(94)90035-3

    Article  PubMed  CAS  Google Scholar 

  25. Walsh AE, Ware CJ, Cowen PJ (1991) Lithium and 5-HT1A receptor sensitivity: a neuroendocrine study in healthy volunteers. Psychopharmacology (Berl) 105:568–572. doi:10.1007/BF02244382

    Article  CAS  Google Scholar 

  26. Rausch JL, Stahl SM, Hauger RL (1990) Cortisol and growth hormone responses to the 5-HT1A agonist gepirone in depressed patients. Biol Psychiatry 28:73–78. doi:10.1016/0006-3223(90)90434-4

    Article  PubMed  CAS  Google Scholar 

  27. Sagud M, Pivac N, Muck-Seler D, Jakovljevic M, Mihaljevic-Peles A, Korsic M (2002) Effects of sertraline treatment on plasma cortisol, prolactin and thyroid hormones in female depressed patients. Neuropsychobiology 45:139–143. doi:10.1159/000054954

    Article  PubMed  CAS  Google Scholar 

  28. Pitchot W, Wauthy J, Hansenne M et al (2002) Hormonal and temperature responses to the 5-HT1A receptor agonist flesinoxan in normal volunteers. Psychopharmacology (Berl) 164:27–32. doi:10.1007/s00213-002-1177-0

    Article  CAS  Google Scholar 

  29. Bhagwagar Z, Hafizi S, Cowen PJ (2002) Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology (Berl) 163:118–120. doi:10.1007/s00213-002-1149-4

    Article  CAS  Google Scholar 

  30. Lotrich FE, Bies R, Muldoon MF, Manuck SB, Smith GS, Pollock BG (2005) Neuroendocrine response to intravenous citalopram in healthy control subjects: pharmacokinetic influences. Psychopharmacology (Berl) 178:268–275. doi:10.1007/s00213-004-2006-4

    Article  CAS  Google Scholar 

  31. Berlin I, Warot D, Legout V, Guillemant S, Schollnhammer G, Puech AJ (1998) Blunted 5-HT1A-receptor agonist-induced corticotropin and cortisol responses after long-term ipsapirone and fluoxetine administration to healthy subjects. Clin Pharmacol Ther 63:428–436. doi:10.1016/S0009-9236(98)90038-8

    Article  PubMed  CAS  Google Scholar 

  32. Lerer B, Gelfin Y, Gorfine M, Allolio B, Lesch KP, Newman ME (1999) 5-HT1A receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge. Neuropsychopharmacology 20:628–639. doi:10.1016/S0893-133X(98)00106-7

    Article  PubMed  CAS  Google Scholar 

  33. Torpy DJ, Grice JE, Hockings GI, Walters MM, Crosbie GV, Jackson RV (1997) Diurnal effects of fluoxetine and naloxone on the human hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol 24:421–423. doi:10.1111/j.1440-1681.1997.tb01213.x

    Article  PubMed  CAS  Google Scholar 

  34. Dinan TG, Majeed T, Lavelle E, Scott LV, Berti C, Behan P (1997) Blunted serotonin-mediated activation of the hypothalamic-pituitary-adrenal axis in chronic fatigue syndrome. Psychoneuroendocrinology 22:261–267. doi:10.1016/S0306-4530(97)00002-4

    Article  PubMed  CAS  Google Scholar 

  35. de la Torre R, Farre M, Roset PN et al (2000) Pharmacology of MDMA in humans. Ann N Y Acad Sci 914:225–237

    PubMed  Google Scholar 

  36. Gouzoulis-Mayfrank E, Thelen B, Habermeyer E et al (1999) Psychopathological, neuroendocrine and autonomic effects of 3,4-methylenedioxyethylamphetamine (MDE), psilocybin and d-methamphetamine in healthy volunteers. Results of an experimental double-blind placebo-controlled study. Psychopharmacology (Berl) 142:41–50 doi:10.1007/s002130050860

    Article  CAS  Google Scholar 

  37. Feuchtl A, Bagli M, Stephan R et al (2004) Pharmacokinetics of m-chlorophenylpiperazine after intravenous and oral administration in healthy male volunteers: implication for the pharmacodynamic profile. Pharmacopsychiatry 37:180–188. doi:10.1055/s-2004-827175

    Article  PubMed  CAS  Google Scholar 

  38. Monteleone P (1991) Effects of trazodone on plasma cortisol in normal subjects. A study with drug plasma levels. Neuropsychopharmacology 5:61–64

    PubMed  CAS  Google Scholar 

  39. Costa A, Martignoni E, Blandini F, Petraglia F, Genazzani AR, Nappi G (1993) Effects of etoperidone on sympathetic and pituitary-adrenal responses to diverse stressors in humans. Clin Neuropharmacol 16:127–138. doi:10.1097/00002826-199304000-00005

    Article  PubMed  CAS  Google Scholar 

  40. Jezova D, Vigas M (1988) Apomorphine injection stimulates beta-endorphin, adrenocorticotropin, and cortisol release in healthy man. Psychoneuroendocrinology 13:479–485. doi:10.1016/0306-4530(88)90033-9

    Article  PubMed  CAS  Google Scholar 

  41. Thorner MO, Ryan SM, Wass JA et al (1978) Effect of the dopamine agonist, lergotrile mesylate, on circulating anterior pituitary hormones in man. J Clin Endocrinol Metab 47:372–378

    PubMed  CAS  Google Scholar 

  42. Nishida S, Matsuki M, Nagase Y et al (1983) Stress-mediated effect of metoclopramide on cortisol secretion in man. J Clin Endocrinol Metab 56:839–843

    PubMed  CAS  Google Scholar 

  43. Staessen J, Fiocchi R, Bouillon R et al (1985) Differential responses of plasma aldosterone, cortisol and adrenocorticotropin to two dopamine receptor antagonists. Methods Find Exp Clin Pharmacol 7:523–527

    PubMed  CAS  Google Scholar 

  44. Coiro V, Volpi R, Capretti L et al (1990) 5-HT1-, but not 5-HT2-serotonergic, M1-, M2-muscarinic cholinergic or dopaminergic receptors mediate the ACTH/cortisol response to metoclopramide in man. Horm Res 33:233–238

    PubMed  CAS  Google Scholar 

  45. Jakovljevic M, Pivac N, Mihaljevic-Peles A et al (2007) The effects of olanzapine and fluphenazine on plasma cortisol, prolactin and muscle rigidity in schizophrenic patients: a double blind study. Prog Neuropsychopharmacol Biol Psychiatry 31:399–402. doi:10.1016/j.pnpbp.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  46. Seki K (1989) Variability of cortisol and adrenocorticotropic hormone responses to metoclopramide during the menstrual cycle. Gynecol Obstet Invest 27:201–203

    Article  PubMed  CAS  Google Scholar 

  47. Joyce PR, Donald RA, Nicholls MG, Livesey JH, Abbott RM (1986) Endocrine and behavioral responses to methylphenidate in normal subjects. Biol Psychiatry 21:1015–1023. doi:10.1016/0006-3223(86)90282-9

    Article  PubMed  CAS  Google Scholar 

  48. Brown WA, Williams BW (1976) Methylphenidate increases serum growth hormone concentrations. J Clin Endocrinol Metab 43:937–939

    PubMed  CAS  Google Scholar 

  49. Müller T, Muhlack S (2007) Acute levodopa intake and associated cortisol decrease in patients with Parkinson disease. Clin Neuropharmacol 30:101–106. doi:10.1097/01.WNF.0000240954.72186.91

    Article  PubMed  CAS  Google Scholar 

  50. Cohrs S, Roher C, Jordan W et al (2006) The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology (Berl) 185:11–18. doi:10.1007/s00213-005-0279-x

    Article  CAS  Google Scholar 

  51. Heesch CM, Negus BH, Keffer JH, Snyder RW II, Risser RC, Eichhorn EJ (1995) Effects of cocaine on cortisol secretion in humans. Am J Med Sci 310:61–64. doi:10.1097/00000441-199508000-00004

    Article  PubMed  CAS  Google Scholar 

  52. Pende A, Musso NR, Montaldi ML, Arzese M, Vergassola C, Devilla L (1987) Interaction between morphine, an opioid agonist, and clonidine, an alpha-adrenergic agonist, on the regulation of anterior pituitary hormone secretion in normal male subjects. Biomed Pharmacother 41:243–247

    PubMed  CAS  Google Scholar 

  53. Slowinska-Srzednicka J, Zgliczynski S, Soszynski P, Pucilowska J, Wierzbicki M, Jeske W (1988) Effect of clonidine on beta-endorphin, ACTH and cortisol secretion in essential hypertension and obesity. Eur J Clin Pharmacol 35:115–121. doi:10.1007/BF00609239

    Article  PubMed  CAS  Google Scholar 

  54. Baranowska B (1990) The effect of clonidine on hormone release mediated through activation of opiate receptors. Cardiovasc Drugs Ther 4:1113–1117. doi:10.1007/BF01856507

    Article  PubMed  CAS  Google Scholar 

  55. Munoz-Hoyos A, Fernandez-Garcia JM, Molina-Carballo A et al (2000) Effect of clonidine on plasma ACTH, cortisol and melatonin in children. J Pineal Res 29:48–53. doi:10.1034/j.1600-079X.2000.290107.x

    Article  PubMed  CAS  Google Scholar 

  56. Krystal JH, McDougle CJ, Woods SW, Price LH, Heninger GR, Charney DS (1992) Dose-response relationship for oral idazoxan effects in healthy human subjects: comparison with oral yohimbine. Psychopharmacology (Berl) 108:313–319. doi:10.1007/BF02245117

    Article  CAS  Google Scholar 

  57. Schule C, Baghai T, Schmidbauer S, Bidlingmaier M, Strasburger CJ, Laakmann G (2004) Reboxetine acutely stimulates cortisol, ACTH, growth hormone and prolactin secretion in healthy male subjects. Psychoneuroendocrinology 29:185–200. doi:10.1016/S0306-4530(03)00022-2

    Article  PubMed  CAS  Google Scholar 

  58. Tse WS, Bond AJ (2005) Sex differences in cortisol response to reboxetine. J Psychopharmacol 19:46–50. doi:10.1177/0269881105048896

    Article  PubMed  CAS  Google Scholar 

  59. Jacobs D, Silverstone T, Rees L (1989) The neuroendocrine response to oral dextroamphetamine in normal subjects. Int Clin Psychopharmacol 4:135–147

    Article  PubMed  CAS  Google Scholar 

  60. Sachar EJ, Halbreich U, Asnis GM, Nathan RS, Halpern FS, Ostrow L (1981) Paradoxical cortisol responses to dextroamphetamine in endogenous depression. Arch Gen Psychiatry 38:1113–1117

    PubMed  CAS  Google Scholar 

  61. Auernhammer CJ, Stalla GK, Lange M, Pfeiffer A, Müller OA (1992) Effects of loperamide on the human hypothalamo-pituitary-adrenal axis in vivo and in vitro. J Clin Endocrinol Metab 75:552–557. doi:10.1210/jc.75.2.552

    Article  PubMed  CAS  Google Scholar 

  62. Delitala G, Grossman A, Besser M (1983) Differential effects of opiate peptides and alkaloids on anterior pituitary hormone secretion. Neuroendocrinology 37:275–279

    Article  PubMed  CAS  Google Scholar 

  63. Pende A, Musso NR, Montaldi ML, Pastorino G, Arzese M, Devilla L (1986) Evaluation of the effects induced by four opiate drugs, with different affinities to opioid receptor subtypes, on anterior pituitary LH, TSH, PRL and GH secretion and on cortisol secretion in normal men. Biomed Pharmacother 40:178–182

    PubMed  CAS  Google Scholar 

  64. Garland EJ, Zis AP (1989) Effect of codeine and oxazepam on afternoon cortisol secretion in men. Psychoneuroendocrinology 14:397–402. doi:10.1016/0306-4530(89)90009-7

    Article  PubMed  CAS  Google Scholar 

  65. Rasheed A, Tareen IA (1995) Effects of heroin on thyroid function, cortisol and testosterone level in addicts. Pol J Pharmacol 47:441–444

    PubMed  CAS  Google Scholar 

  66. Zis AP, Remick RA, Clark CM, Goldner E, Grant BE, Brown GM (1989) Effect of morphine on cortisol and prolactin secretion in anorexia nervosa and depression. Clin Endocrinol (Oxf) 30:421–427

    Article  CAS  Google Scholar 

  67. Allolio B, Winkelmann W, Hipp FX, Kaulen D, Mies R (1982) Effects of a met-enkephalin analog on adrenocorticotropin (ACTH), growth hormone, and prolactin in patients with ACTH hypersecretion. J Clin Endocrinol Metab 55:1–7

    PubMed  CAS  Google Scholar 

  68. Demura R, Suda T, Wakabayashi I et al (1981) Plasma pituitary hormone responses to the synthetic enkephalin analog (FK 33–824) in normal subjects and patients with pituitary diseases. J Clin Endocrinol Metab 52:263–266

    PubMed  CAS  Google Scholar 

  69. Bernini GP, Argenio GF, Cerri F, Franchi F (1994) Comparison between the suppressive effects of dexamethasone and loperamide on cortisol and ACTH secretion in some pathological conditions. J Endocrinol Invest 17:799–804

    PubMed  CAS  Google Scholar 

  70. Ciampelli M, Guido M, Cucinelli F, Cinque B, Barini A, Lanzone A (2000) Hypothalamic-pituitary-adrenal axis sensitivity to opioids in women with polycystic ovary syndrome. Fertil Steril 73:712–717. doi:10.1016/S0015-0282(99)00602-0

    Article  PubMed  CAS  Google Scholar 

  71. Banki CM, Arato M (1987) Multiple hormonal responses to morphine: relationship to diagnosis and dexamethasone suppression. Psychoneuroendocrinology 12:3–11. doi:10.1016/0306-4530(87)90016-3

    Article  PubMed  CAS  Google Scholar 

  72. Ur E, Wright DM, Bouloux PM, Grossman A (1997) The effects of spiradoline (U-62066E), a kappa-opioid receptor agonist, on neuroendocrine function in man. Br J Pharmacol 120:781–784. doi:10.1038/sj.bjp.0700971

    Article  PubMed  CAS  Google Scholar 

  73. Uhart M, Chong RY, Oswald L, Lin PI, Wand GS (2006) Gender differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity. Psychoneuroendocrinology 31:642–652. doi:10.1016/j.psyneuen.2006.02.003

    Article  PubMed  CAS  Google Scholar 

  74. Mendelson JH, Mello NK, Cristofaro P, Skupny A, Ellingboe J (1986) Use of naltrexone as a provocative test for hypothalamic-pituitary hormone function. Pharmacol Biochem Behav 24:309–313. doi:10.1016/0091-3057(86)90356-4

    Article  PubMed  CAS  Google Scholar 

  75. Geer EB, Landman RE, Wardlaw SL, Conwell IM, Freda PU (2005) Stimulation of the hypothalamic-pituitary-adrenal axis with the opioid antagonist nalmefene. Pituitary 8:115–122. doi:10.1007/s11102-005-5227-6

    Article  PubMed  CAS  Google Scholar 

  76. Coiro V, d’Amato L, Marchesi C et al (1990) Luteinizing hormone and cortisol responses to naloxone in normal weight women with bulimia. Psychoneuroendocrinology 15:463–470. doi:10.1016/0306-4530(90)90069-L

    Article  PubMed  CAS  Google Scholar 

  77. Delitala G, Giusti M, Borsi L et al (1981) Effects of a Met-enkephalin analogue and naloxone infusion on anterior pituitary hormone secretion in acromegaly. Horm Res 15:88–98

    PubMed  CAS  Google Scholar 

  78. Guido M, Ciampelli M, Fulghesu AM et al (1999) Influence of body mass on the hypothalamic-pituitary-adrenal-axis response to naloxone in patients with polycystic ovary syndrome. Fertil Steril 71:462–467. doi:10.1016/S0015-0282(98)00470-1

    Article  PubMed  CAS  Google Scholar 

  79. Kemper A, Koalick F, Thiele H, Retzow A, Rathsack R, Nickel B (1990) Cortisol and beta-endorphin response in alcoholics and alcohol abusers following a high naloxone dosage. Drug Alcohol Depend 25:319–326. doi:10.1016/0376-8716(90)90158-B

    Article  PubMed  CAS  Google Scholar 

  80. Michelson D, Altemus M, Galliven E, Hill L, Greenberg BD, Gold P (1996) Naloxone-induced pituitary-adrenal activation does not differ in patients with depression, obsessive compulsive disorder, and healthy controls. Neuropsychopharmacology 15:207–212. doi:10.1016/0893-133X(95)00210-5

    Article  PubMed  CAS  Google Scholar 

  81. Elias AN, Gwinup G, Valenta LJ (1981) Effects of valproic acid, naloxone and hydrocortisone in Nelson’s syndrome and Cushing’s disease. Clin Endocrinol (Oxf) 15:151–154

    Article  CAS  Google Scholar 

  82. Tariot PN, Upadhyaya A, Sunderland T et al (1999) Physiologic and neuroendocrine responses to intravenous naloxone in subjects with Alzheimer’s disease and age-matched controls. Biol Psychiatry 46:412–419. doi:10.1016/S0006-3223(98)00329-1

    Article  PubMed  CAS  Google Scholar 

  83. Volpi R, Caffarra P, Marcato A et al (1991) Reduced ACTH/cortisol responses to naloxone in men with Parkinson’s disease. J Neural Transm Park Dis Dement Sect 3:127–132. doi:10.1007/BF02260887

    Article  PubMed  CAS  Google Scholar 

  84. Lanzone A, Guido M, Ciampelli M et al (1996) Evidence of a disturbance of the hypothalamic-pituitary-adrenal axis in polycystic ovary syndrome: effect of naloxone. Clin Endocrinol (Oxf) 45:73–77. doi:10.1111/j.1365-2265.1996.tb02062.x

    Article  CAS  Google Scholar 

  85. O’Malley SS, Krishnan-Sarin S, Farren C, Sinha R, Kreek MJ (2002) Naltrexone decreases craving and alcohol self-administration in alcohol-dependent subjects and activates the hypothalamo-pituitary-adrenocortical axis. Psychopharmacology (Berl) 160:19–29. doi:10.1007/s002130100919

    Article  CAS  Google Scholar 

  86. Delva NJ, Brooks DL, Franklin M et al (2002) Effects of short-term administration of valproate on serotonin-1A and dopamine receptor function in healthy human subjects. J Psychiatry Neurosci 27:429–437

    PubMed  Google Scholar 

  87. Invitti C, Danesi L, Dubini A, Cavagnini F (1988) Neuroendocrine effects of chronic administration of sodium valproate in epileptic patients. Acta Endocrinol (Copenh) 118:381–388

    CAS  Google Scholar 

  88. Kritzler RK, Vining EP, Plotnick LP (1983) Sodium valproate and corticotropin suppression in the child treated for seizures. J Pediatr 102:142–143. doi:10.1016/S0022-3476(83)80313-8

    Article  PubMed  CAS  Google Scholar 

  89. Cavagnini F, Invitti C, Polli EE (1984) Sodium valproate in Cushing’s disease. Lancet 2(8395):162–163

    Article  PubMed  CAS  Google Scholar 

  90. Flück CE, Yaworsky DC, Miller WL (2005) Effects of anticonvulsants on human p450c17 (17alpha-hydroxylase/17,20 lyase) and 3beta-hydroxysteroid dehydrogenase type 2. Epilepsia 46:444–448. doi:10.1111/j.0013-9580.2005.38404.x

    Article  PubMed  Google Scholar 

  91. Chappell KA, Markowitz JS, Jackson CW (1999) Is valproate pharmacotherapy associated with polycystic ovaries? Ann Pharmacother 33:1211–1216. doi:10.1345/aph.19096

    Article  PubMed  CAS  Google Scholar 

  92. Beary MD, Lacey JH, Bhat AV (1983) The neuro-endocrine impact of 3-hydroxy-diazepam (temazepam) in women. Psychopharmacology (Berl) 79:295–297. doi:10.1007/BF00433404

    Article  CAS  Google Scholar 

  93. Risby ED, Hsiao JK, Golden RN, Potter WZ (1989) Intravenous alprazolam challenge in normal subjects. Biochemical, cardiovascular, and behavioral effects. Psychopharmacology (Berl) 99:508–514. doi:10.1007/BF00589900

    Article  CAS  Google Scholar 

  94. Mussig K, Friess E, Wudy SA, Morike K, Haring HU, Overkamp D (2006) Secondary adrenal failure due to long-term treatment with flunitrazepam. Clin Endocrinol (Oxf) 65:549–550. doi:10.1111/j.1365-2265.2006.02622.x

    Article  Google Scholar 

  95. Risch SC, Janowsky DS, Mott MA et al (1986) Central and peripheral cholinesterase inhibition: effects on anterior pituitary and sympathomimetic function. Psychoneuroendocrinology 11:221–230. doi:10.1016/0306-4530(86)90057-0

    Article  PubMed  CAS  Google Scholar 

  96. Peskind ER, Raskind MA, Wingerson D et al (1996) Hypothalamic-pituitary-adrenocortical axis responses to physostigmine: effects of Alzheimer’s disease and gender. Biol Psychiatry 40:61–68. doi:10.1016/0006-3223(95)00318-5

    Article  PubMed  CAS  Google Scholar 

  97. Kumar V, Smith RC, Sherman KA et al (1988) Cortisol responses to cholinergic drugs in Alzheimer’s disease. Int J Clin Pharmacol Ther Toxicol 26:471–476

    PubMed  CAS  Google Scholar 

  98. Asthana S, Raffaele KC, Greig NH, Schapiro MB, Blackman MR, Soncrant TT (1999) Neuroendocrine responses to intravenous infusion of physostigmine in patients with Alzheimer disease. Alzheimer Dis Assoc Disord 13:102–108. doi:10.1097/00002093-199904000-00008

    Article  PubMed  CAS  Google Scholar 

  99. Rubin RT, O’Toole SM, Rhodes ME, Sekula LK, Czambel RK (1999) Hypothalamo-pituitary-adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration: sex differences between major depressives and matched control subjects. Psychiatry Res 89:1–20. doi:10.1016/S0165-1781(99)00085-2

    Article  PubMed  CAS  Google Scholar 

  100. Peskind ER, Raskind MA, Wingerson D et al (1995) Enhanced hypothalamic-pituitary-adrenocortical axis responses to physostigmine in normal aging. J Gerontol A Biol Sci Med Sci 50:M114–M120

    PubMed  CAS  Google Scholar 

  101. Rubin RT, Rhodes ME, Miller TH, Jakab RL, Czambel RK (2006) Sequence of pituitary-adrenal cortical hormone responses to low-dose physostigmine administration in young adult women and men. Life Sci 79:2260–2268. doi:10.1016/j.lfs.2006.07.023

    Article  PubMed  CAS  Google Scholar 

  102. Laakmann G, Schoen HW, Blaschke D, Wittmann M (1985) Dose-dependent growth hormone, prolactin and cortisol stimulation after i.v. administration of desimipramine in human subjects. Psychoneuroendocrinology 10:83–93. doi:10.1016/0306-4530(85)90042-3

    Article  PubMed  CAS  Google Scholar 

  103. Nutt D, Middleton H, Franklin M (1987) The neuroendocrine effects of oral imipramine. Psychoneuroendocrinology 12:367–375. doi:10.1016/0306-4530(87)90065-5

    Article  PubMed  CAS  Google Scholar 

  104. Laakmann G, Wittmann M, Gugath M et al (1984) Effects of psychotropic drugs (desimipramine, chlorimipramine, sulpiride and diazepam) on the human HPA axis. Psychopharmacology (Berl) 84:66–70. doi:10.1007/BF00432027

    Article  CAS  Google Scholar 

  105. Golden RN, Hsiao J, Lane E, Hicks R, Rogers S, Potter WZ (1989) The effects of intravenous clomipramine on neurohormones in normal subjects. J Clin Endocrinol Metab 68:632–637

    PubMed  CAS  Google Scholar 

  106. Schule C, Baghai T, Goy J, Bidlingmaier M, Strasburger C, Laakmann G (2002) The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacology (Berl) 163:95–101. doi:10.1007/s00213-002-1148-5

    Article  CAS  Google Scholar 

  107. Schule C, Sighart C, Hennig J, Laakmann G (2006) Mirtazapine inhibits salivary cortisol concentrations in anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 30:1015–1019. doi:10.1016/j.pnpbp.2006.03.023

    Article  PubMed  CAS  Google Scholar 

  108. Laakmann G, Hennig J, Baghai T, Schule C (2004) Mirtazapine acutely inhibits salivary cortisol concentrations in depressed patients. Ann N Y Acad Sci 1032:279–282. doi:10.1196/annals.1314.038

    Article  PubMed  CAS  Google Scholar 

  109. Lissoni P, Brivio F, Fumagalli L et al (2007) Immune and endocrine mechanisms of advanced cancer-related hypercortisolemia. In vivo 21:647–650

    PubMed  CAS  Google Scholar 

  110. Corssmit EP, Heijligenberg R, Endert E, Ackermans MT, Sauerwein HP, Romijn JA (1996) Endocrine and metabolic effects of interferon-alpha in humans. J Clin Endocrinol Metab 81:3265–3269. doi:10.1210/jc.81.9.3265

    Article  PubMed  CAS  Google Scholar 

  111. Angioni S, Iori G, Cellini M et al (1992) Acute beta-interferon or thymopentin administration increases plasma growth hormone and cortisol levels in children. Acta Endocrinol (Copenh) 127:237–241

    CAS  Google Scholar 

  112. de Metz J, Sprangers F, Endert E et al (1999) Interferon-gamma has immunomodulatory effects with minor endocrine and metabolic effects in humans. J Appl Physiol 86:517–522

    PubMed  Google Scholar 

  113. Nolten WE, Goldstein D, Lindstrom M et al (1993) Effects of cytokines on the pituitary-adrenal axis in cancer patients. J Interferon Res 13:349–357

    PubMed  CAS  Google Scholar 

  114. Curti BD, Urba WJ, Longo DL et al (1996) Endocrine effects of IL-1 alpha and beta administered in a phase I trial to patients with advanced cancer. J Immunother Emphasis Tumor Immunol 19:142–148

    PubMed  CAS  Google Scholar 

  115. Muller H, Hiemke C, Hammes E, Hess G (1992) Sub-acute effects of interferon-alpha 2 on adrenocorticotrophic hormone, cortisol, growth hormone and prolactin in humans. Psychoneuroendocrinology 17:459–465. doi:10.1016/0306-4530(92)90004-Q

    Article  PubMed  CAS  Google Scholar 

  116. Spath-Schwalbe E, Hansen K, Schmidt F et al (1998) Acute effects of recombinant human interleukin-6 on endocrine and central nervous sleep functions in healthy men. J Clin Endocrinol Metab 83:1573–1579. doi:10.1210/jc.83.5.1573

    Article  PubMed  CAS  Google Scholar 

  117. Lissoni P, Rovelli F, Tisi E et al (1992) Endocrine effects of human recombinant interleukin-3 in cancer patients. Int J Biol Markers 7:230–233

    PubMed  CAS  Google Scholar 

  118. Giavoli C, Libé R, Corbetta S et al (2004) Effect of recombinant human growth hormone (GH) replacement on the hypothalamic-pituitary-adrenal axis in adult GH-deficient patients. J Clin Endocrinol Metab 89:5397–5401. doi:10.1210/jc.2004-1114

    Article  PubMed  CAS  Google Scholar 

  119. Mishra SK, Gupta N, Goswami R (2007) Plasma adrenocorticotropin (ACTH) values and cortisol response to 250 and 1 microg ACTH stimulation in patients with hyperthyroidism before and after carbimazole therapy: case-control comparative study. J Clin Endocrinol Metab 92:1693–1696. doi:10.1210/jc.2006-2090

    Article  PubMed  CAS  Google Scholar 

  120. Tsatsoulis A, Johnson EO, Kalogera CH, Seferiadis K, Tsolas O (2000) The effect of thyrotoxicosis on adrenocortical reserve. Eur J Endocrinol 142:231–235. doi:10.1530/eje.0.1420231

    Article  PubMed  CAS  Google Scholar 

  121. Malik KJ, Wakelin K, Dean S, Cove DH, Wood PJ (1996) Cushing’s syndrome and hypothalamic-pituitary adrenal axis suppression induced by medroxyprogesterone acetate. Ann Clin Biochem 33:187–189

    PubMed  Google Scholar 

  122. Raedler TJ, Jahn H, Goedeken B, Gescher DM, Kellner M, Wiedemann K (2003) Acute effects of megestrol on the hypothalamic-pituitary-adrenal axis. Cancer Chemother Pharmacol 52:482–486. doi:10.1007/s00280-003-0697-6

    Article  PubMed  CAS  Google Scholar 

  123. Lundgren S, Lonning PE, Utaaker E, Aakvaag A, Kvinnsland S (1990) Influence of progestins on serum hormone levels in postmenopausal women with advanced breast cancer – I. General findings. J Steroid Biochem 36:99–104. doi:10.1016/0022-4731(90)90118-C

    Article  PubMed  CAS  Google Scholar 

  124. Matin K, Egorin MJ, Ballesteros MF et al (2002) Phase I and pharmacokinetic study of vinblastine and high-dose megestrol acetate. Cancer Chemother Pharmacol 50:179–185. doi:10.1007/s00280-002-0484-9

    Article  PubMed  CAS  Google Scholar 

  125. Chidakel AR, Zweig SB, Schlosser JR, Homel P, Schappert JW, Fleckman AM (2006) High prevalence of adrenal suppression during acute illness in hospitalized patients receiving megestrol acetate. J Endocrinol Invest 29:136–140

    PubMed  CAS  Google Scholar 

  126. Leinung MC, Liporace R, Miller CH (1995) Induction of adrenal suppression by megestrol acetate in patients with AIDS. Ann Intern Med 122:843–845

    PubMed  CAS  Google Scholar 

  127. Clerico A, Minervini R, Del Chicca MG, Barsantini S, Fiorentini L (1984) Elevated free cortisol plasma levels in patients with prostatic carcinoma undergoing treatment with estrogens. Int J Clin Pharmacol Res 4:335–339

    PubMed  CAS  Google Scholar 

  128. Qureshi AC, Bahri A, Breen LA et al (2007) The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clin Endocrinol (Oxf) 66:632–635. doi:10.1111/j.1365-2265.2007.02784.x

    Article  CAS  Google Scholar 

  129. Genazzani AR, Lombardi I, Borgioli G et al (2003) Adrenal function under long-term raloxifene administration. Gynecol Endocrinol 17:159–168. doi:10.1080/713603211

    Article  PubMed  CAS  Google Scholar 

  130. Späth-Schwalbe E, Piroth L, Pietrowsky R, Born J, Fehm HL (1988) Stimulation of the pituitary adrenocortical system in man by cerulein, a cholecystokinin-8-like peptide. Clin Physiol Biochem 6:316–320

    PubMed  Google Scholar 

  131. Schule C, Baghai T, Sauer N, Laakmann G (2004) Endocrinological effects of high-dose Hypericum perforatum extract WS 5570 in healthy subjects. Neuropsychobiology 49:58–63. doi:10.1159/000076411

    Article  PubMed  CAS  Google Scholar 

  132. Moro M, Putignano P, Losa M, Invitti C, Maraschini C, Cavagnini F (2000) The desmopressin test in the differential diagnosis between Cushing’s disease and pseudo-Cushing states. J Clin Endocrinol Metab 85:3569–3574. doi:10.1210/jc.85.10.3569

    Article  PubMed  CAS  Google Scholar 

  133. Schoneshofer M, Fenner A, Altinok G, Dulce HJ (1980) Specific and practicable assessment of urinary free cortisol by combination of automatic high-pressure liquid chromatography and radioimmunoassay. Clin Chim Acta 106:63–73. doi:10.1016/0009-8981(80)90375-7

    Article  PubMed  CAS  Google Scholar 

  134. Fink RS, Pierre LN, Daley-Yates PT, Richards DH, Gibson A, Honour JW (2002) Hypothalamic-pituitary-adrenal axis function after inhaled corticosteroids: unreliability of urinary free cortisol estimation. J Clin Endocrinol Metab 87:4541–4546. doi:10.1210/jc.2002-020287

    Article  PubMed  CAS  Google Scholar 

  135. Turpeinen U, Markkanen H, Valimaki M, Stenman UH (1997) Determination of urinary free cortisol by HPLC. Clin Chem 43:1386–1391

    PubMed  CAS  Google Scholar 

  136. Findling JW, Pinkstaff SM, Shaker JL, Raff H, Nelson JC (1998) Pseudohypercortisoluria: spurious elevation of urinary cortisol due to carbamazepine. Endocrinologist 8:51–54. doi:10.1097/00019616-199803000-00001

    Article  Google Scholar 

  137. Taylor RL, Machacek D, Singh RJ (2002) Validation of a high-throughput liquid chromatography-tandem mass spectrometry method for urinary cortisol and cortisone. Clin Chem 48:1511–1519

    PubMed  CAS  Google Scholar 

  138. Meikle AW, Findling J, Kushnir MM, Rockwood AL, Nelson GJ, Terry AH (2003) Pseudo-Cushing syndrome caused by fenofibrate interference with urinary cortisol assayed by high-performance liquid chromatography. J Clin Endocrinol Metab 88:3521–3524. doi:10.1210/jc.2003-030234

    Article  PubMed  CAS  Google Scholar 

  139. Schurmeyer TH, Brademann G, von zur Muhlen A (1996) Effect of fenfluramine on episodic ACTH and cortisol secretion. Clin Endocrinol (Oxf) 45:39–45. doi:10.1111/j.1365-2265.1996.tb02058.x

    Article  CAS  Google Scholar 

  140. Razenberg AJ, Elte JW, Rietveld AP, van Zaanen HC, Cabezas MC (2007) A ‘smart’ type of Cushing’s syndrome. Eur J Endocrinol 157:779–781. doi:10.1530/EJE-07-0538

    Article  PubMed  CAS  Google Scholar 

  141. Lopez AL, Kathol RG, Noyes R Jr (1990) Reduction in urinary free cortisol during benzodiazepine treatment of panic disorder. Psychoneuroendocrinology 15:23–28. doi:10.1016/0306-4530(90)90043-9

    Article  PubMed  CAS  Google Scholar 

  142. Vicennati V, Ceroni L, Gagliardi L et al (2004) Response of the hypothalamic-pituitary-adrenal axis to small dose arginine-vasopressin and daily urinary free cortisol before and after alprazolam pre-treatment differs in obesity. J Endocrinol Invest 27:541–547

    PubMed  CAS  Google Scholar 

  143. Schule C, Baghai T, Rackwitz C, Laakmann G (2003) Influence of mirtazapine on urinary free cortisol excretion in depressed patients. Psychiatry Res 120:257–264. doi:10.1016/S0165-1781(03)00204-X

    Article  PubMed  CAS  Google Scholar 

  144. Prinz P, Bailey S, Moe K, Wilkinson C, Scanlan J (2001) Urinary free cortisol and sleep under baseline and stressed conditions in healthy senior women: effects of estrogen replacement therapy. J Sleep Res 10:19–26. doi:10.1046/j.1365-2869.2001.00236.x

    Article  PubMed  CAS  Google Scholar 

  145. Ruokonen A, Lund L, Nummi S, Alapiessa U, Viinikka L (1982) Effects of two oral contraceptive combinations, 0.125 mg desogestrel + 0.050 mg ethinylestradiol and 0.125 mg levonorgestrel + 0.050 mg ethinylestradiol on the adrenal function of healthy female volunteers. Eur J Obstet Gynecol Reprod Biol 13:259–265. doi:10.1016/0028-2243(82)90107-1

    Article  PubMed  CAS  Google Scholar 

  146. MacKenzie MA, Hoefnagels WH, Jansen RW, Benraad TJ, Kloppenborg PW (1990) The influence of glycyrrhetinic acid on plasma cortisol and cortisone in healthy young volunteers. J Clin Endocrinol Metab 70:1637–1643

    PubMed  CAS  Google Scholar 

  147. Agha A, Monson JP (2007) Modulation of glucocorticoid metabolism by the growth hormone–IGF-1 axis. Clin Endocrinol (Oxf) 66:459–465

    CAS  Google Scholar 

  148. Ma RC, Chan WB, So WY, Tong PC, Chan JC, Chow CC (2005) Carbamazepine and false positive dexamethasone suppression tests for Cushing’s syndrome. BMJ 330:299–300. doi:10.1136/bmj.330.7486.299

    Article  PubMed  Google Scholar 

  149. Debrunner J, Schmid C, Schneemann M (2002) Falsely positive dexamethasone suppression test in a patient treated with phenytoin to prevent seizures due to nocardia brain abscesses. Swiss Med Wkly 132:267

    PubMed  Google Scholar 

  150. Kyriazopoulou V, Vagenakis AG (1992) Abnormal overnight dexamethasone suppression test in subjects receiving rifampicin therapy. J Clin Endocrinol Metab 75:315–317. doi:10.1210/jc.75.1.315

    Article  PubMed  CAS  Google Scholar 

  151. Keitner GI, Fruzzetti AE, Miller IW, Norman WH, Brown WA (1989) The effect of anticonvulsants on the dexamethasone suppression test. Can J Psychiatry 34:441–443

    PubMed  CAS  Google Scholar 

  152. Putignano P, Kaltsas GA, Satta MA, Grossman AB (1998) The effects of anti-convulsant drugs on adrenal function. Horm Metab Res 30:389–397

    PubMed  CAS  Google Scholar 

  153. Roby CA, Anderson GD, Kantor E, Dryer DA, Burstein AH (2000) St John’s Wort: effect on CYP3A4 activity. Clin Pharmacol Ther 67:451–457. doi:10.1067/mcp.2000.106793

    Article  PubMed  CAS  Google Scholar 

  154. Wenk M, Todesco L, Krahenbuhl S (2004) Effect of St John’s wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females. Br J Clin Pharmacol 57:495–499. doi:10.1111/j.1365-2125.2003.02049.x

    Article  PubMed  CAS  Google Scholar 

  155. Wood PJ, Barth JH, Freedman DB, Perry L, Sheridan B (1997) Evidence for the low dose dexamethasone suppression test to screen for Cushing’s syndrome – recommendations for a protocol for biochemistry laboratories. Ann Clin Biochem 34:222–229

    PubMed  CAS  Google Scholar 

  156. Charles GA, Orsulak PJ, Rush AJ, Fulton CL (1995) Arecoline reverses dexamethasone suppression of cortisol in normal males: a pilot study. Biol Psychiatry 37:811–816. doi:10.1016/0006-3223(94)00215-O

    Article  PubMed  CAS  Google Scholar 

  157. Berger M, Doerr P, von Zerssen D (1984) Physostigmine’s influence on DST results. Am J Psychiatry 141:469–470

    PubMed  CAS  Google Scholar 

  158. Maes M, Van Gastel A, Meltzer HY, Cosyns P, Blockx P, Desnyder R (1996) Acute administration of buspirone increases the escape of hypothalamic-pituitary-adrenal-axis hormones from suppression by dexamethasone in depression. Psychoneuroendocrinology 21:67–81. doi:10.1016/0306-4530(95)00028-3

    Article  PubMed  CAS  Google Scholar 

  159. Gottfries CG, Nyth AL (1991) Effect of citalopram, a selective 5-HT reuptake blocker, in emotionally disturbed patients with dementia. Ann N Y Acad Sci 640:276–279

    PubMed  CAS  Google Scholar 

  160. Bschor T, Baethge C, Adli M et al (2003) Lithium augmentation increases post-dexamethasone cortisol in the dexamethasone suppression test in unipolar major depression. Depress Anxiety 17:43–48. doi:10.1002/da.10078

    Article  PubMed  CAS  Google Scholar 

  161. Kin NM, Nair NP, Amin M et al (1997) The dexamethasone suppression test and treatment outcome in elderly depressed patients participating in a placebo-controlled multicenter trial involving moclobemide and nortriptyline. Biol Psychiatry 42:925–931. doi:10.1016/S0006-3223(97)00158-3

    Article  PubMed  CAS  Google Scholar 

  162. Dommisse CS, Hayes PE, Kwentus JA (1985) Effect of estrogens on the dexamethasone suppression test in nondepressed women. J Clin Psychopharmacol 5:315–319

    PubMed  CAS  Google Scholar 

  163. Tiller JW, Maguire KP, Schweitzer I et al (1988) The dexamethasone suppression test: a study in a normal population. Psychoneuroendocrinology 13:377–384. doi:10.1016/0306-4530(88)90044-3

    Article  PubMed  CAS  Google Scholar 

  164. Gozansky WS, Lynn JS, Laudenslager ML, Kohrt WM (2005) Salivary cortisol determined by enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic hypothalamic–pituitary–adrenal axis activity. Clin Endocrinol (Oxf) 63:336–341. doi:10.1111/j.1365-2265.2005.02349.x

    Article  CAS  Google Scholar 

  165. Schmid DA, Wichniak A, Uhr M et al (2006) Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, prolactin, melatonin, ghrelin, and leptin, and the DEX-CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology 31:832–844. doi:10.1038/sj.npp.1300923

    Article  PubMed  CAS  Google Scholar 

  166. Jarrett DB, Pollock B, Miewald JM, Kupfer DJ (1991) Acute effect of intravenous clomipramine upon sleep-related hormone secretion in depressed outpatients and healthy control subjects. Biol Psychiatry 29:3–14. doi:10.1016/0006-3223(91)90206-2

    Article  PubMed  CAS  Google Scholar 

  167. Skene DJ, Bojkowski CJ, Arendt J (1994) Comparison of the effects of acute fluvoxamine and desipramine administration on melatonin and cortisol production in humans. Br J Clin Pharmacol 37:181–186

    PubMed  CAS  Google Scholar 

  168. Steiger A, Benkert O, Holsboer F (1994) Effects of long-term treatment with the MAO-A inhibitor moclobemide on sleep EEG and nocturnal hormonal secretion in normal men. Neuropsychobiology 30:101–105

    Article  PubMed  CAS  Google Scholar 

  169. Mann K, Rossbach W, Müller MJ et al (2006) Nocturnal hormone profiles in patients with schizophrenia treated with olanzapine. Psychoneuroendocrinology 31:256–264. doi:10.1016/j.psyneuen.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  170. Dodt C, Kern W, Fehm HL, Born J (1993) Antimineralocorticoid canrenoate enhances secretory activity of the hypothalamus-pituitary-adrenocortical (HPA) axis in humans. Neuroendocrinology 58:570–574

    Article  PubMed  CAS  Google Scholar 

  171. Steiger A, Benkert O, Wöhrmann S, Steinseifer D, Holsboer F (1989) Effects of trimipramine on sleep EEG, penile tumescence and nocturnal hormonal secretion. A long-term study in 3 normal controls. Neuropsychobiology 21:71–75

    Article  PubMed  CAS  Google Scholar 

  172. Wiegand M, Berger M (1989) Action of trimipramine on sleep and pituitary hormone secretion. Drugs 38(Suppl 1):35–42. discussion 49–50

    Article  PubMed  CAS  Google Scholar 

  173. Sonntag A, Rothe B, Guldner J, Yassouridis A, Holsboer F, Steiger A (1996) Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression. 4:1–13. doi:10.1002/(SICI)1522-7162(1996)4:1<1::AID-DEPR1>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  174. Facchinetti F, Volpe A, Farci G et al (1985) Hypothalamus-pituitary-adrenal axis of heroin addicts. Drug Alcohol Depend 15:361–366. doi:10.1016/0376-8716(85)90014-6

    Article  PubMed  CAS  Google Scholar 

  175. Thakore JH, Barnes C, Joyce J, Medbak S, Dinan TG (1997) Effects of antidepressant treatment on corticotropin-induced cortisol responses in patients with melancholic depression. Psychiatry Res 73:27–32. doi:10.1016/S0165-1781(97)00106-6

    Article  PubMed  CAS  Google Scholar 

  176. Hellman L, Yoshida K, Zumoff B, Levin J, Kream J, Fukushima DK (1976) The effect of medroxyprogesterone acetate on the pituitary-adrenal axis. J Clin Endocrinol Metab 42:912–917

    PubMed  CAS  Google Scholar 

  177. Leis D, Bottermann P, Ermler R, Henderkott U, Glück H (1980) The influence of high doses of oral medroxyprogesterone acetate on glucose tolerance, serum insulin levels and adrenal response to ACTH. A study of 17 patients under treatment for endometrial cancer. Arch Gynecol 230:9–13. doi:10.1007/BF02108593

    Article  PubMed  CAS  Google Scholar 

  178. Subramanian S, Goker H, Kanji A, Sweeney H (1997) Clinical adrenal insufficiency in patients receiving megestrol therapy. Arch Intern Med 157:1008–1011. doi:10.1001/archinte.157.9.1008

    Article  PubMed  CAS  Google Scholar 

  179. Giavoli C, Bergamaschi S, Ferrante E et al (2008) Effect of growth hormone deficiency and recombinant hGH (rhGH) replacement on the hypothalamic-pituitary-adrenal axis in children with idiopathic isolated GH deficiency. Clin Endocrinol (Oxf) 68:247–251

    CAS  Google Scholar 

  180. Trachtenberg J, Zadra J (1988) Steroid synthesis inhibition by ketoconazole: sites of action. Clin Invest Med 11:1–5

    PubMed  CAS  Google Scholar 

  181. Albert SG, DeLeon MJ, Silverberg AB (2001) Possible association between high-dose fluconazole and adrenal insufficiency in critically ill patients. Crit Care Med 29:668–670. doi:10.1097/00003246-200103000-00039

    Article  PubMed  CAS  Google Scholar 

  182. Belkien L, Baumann J, Schirpai M, Oelkers W (1983) Propranolol enhances the effect of ACTH on plasma cortisol, but not on aldosterone in man. J Endocrinol Invest 6:341–345

    PubMed  CAS  Google Scholar 

  183. Kizildere S, Glück T, Zietz B, Schölmerich J, Straub RH (2003) During a corticotropin-releasing hormone test in healthy subjects, administration of a beta-adrenergic antagonist induced secretion of cortisol and dehydroepiandrosterone sulfate and inhibited secretion of ACTH. Eur J Endocrinol 148:45–53. doi:10.1530/eje.0.1480045

    Article  PubMed  CAS  Google Scholar 

  184. Ljung T, Ahlberg AC, Holm G et al (2001) Treatment of abdominally obese men with a serotonin reuptake inhibitor: a pilot study. J Intern Med 250:219–224. doi:10.1046/j.1365-2796.2001.00881.x

    Article  PubMed  CAS  Google Scholar 

  185. Tomori N, Suda T, Nakagami Y et al (1989) Adrenergic modulation of adrenocorticotropin responses to insulin-induced hypoglycemia and corticotropin-releasing hormone. J Clin Endocrinol Metab 68:87–93

    PubMed  CAS  Google Scholar 

  186. Arvat E, Maccagno B, Giordano R et al (2001) Mineralocorticoid receptor blockade by canrenoate increases both spontaneous and stimulated adrenal function in humans. J Clin Endocrinol Metab 86:3176–3181. doi:10.1210/jc.86.7.3176

    Article  PubMed  CAS  Google Scholar 

  187. Nishida S, Matsuki M, Adachi N et al (1987) Pituitary-adrenocortical response to metoclopramide in patients with acromegaly and prolactinoma: a clinical evaluation of catecholamine-mediated adrenocorticotropin secretion. J Clin Endocrinol Metab 64:995–1001

    Article  PubMed  CAS  Google Scholar 

  188. Gisslinger H, Svoboda T, Clodi M et al (1993) Interferon-alpha stimulates the hypothalamic-pituitary-adrenal axis in vivo and in vitro. Neuroendocrinology 57:489–495

    Article  PubMed  CAS  Google Scholar 

  189. Rittmaster RS, Cutler GB Jr, Sobel DO et al (1985) Morphine inhibits the pituitary-adrenal response to ovine corticotropin-releasing hormone in normal subjects. J Clin Endocrinol Metab 60:891–895

    PubMed  CAS  Google Scholar 

  190. Allolio B, Schulte HM, Deuss U, Kallabis D, Hamel E, Winkelman W (1987) Effect of oral morphine and naloxone on pituitary-adrenal response in man induced by human corticotropin-releasing hormone. Acta Endocrinol (Copenh) 114:509–514

    CAS  Google Scholar 

  191. Michelson D, Galliven E, Hill L, Demitrack M, Chrousos G, Gold P (1997) Chronic imipramine is associated with diminished hypothalamic-pituitary-adrenal axis responsivity in healthy humans. Clin Endocrinol Metab 82:2601–2606. doi:10.1210/jc.82.8.2601

    Article  CAS  Google Scholar 

  192. Korbonits M, Trainer PJ, Edwards R, Besser GM, Grossman AB (1995) Benzodiazepines attenuate the pituitary-adrenal responses to corticotrophin-releasing hormone in healthy volunteers, but not in patients with Cushing’s syndrome. Clin Endocrinol (Oxf) 43:29–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cavagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrogio, A.G., Pecori Giraldi, F. & Cavagnini, F. Drugs and HPA axis. Pituitary 11, 219–229 (2008). https://doi.org/10.1007/s11102-008-0114-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-008-0114-6

Keywords

Navigation