Skip to main content

Advertisement

Log in

Cell and Tissue Targeting of Nucleic Acids for Cancer Gene Therapy

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Abstract

Tumor targeting—per definition—includes any strategy to improve the specificity of the therapeutic nucleic acid towards the tumor site, while highest biological activity should be maintained. Targeting has been successfully achieved at the transcriptional, transductional or delivery level. For tumor-specific delivery, physical targeting methods like electroporation, hyperthermia, magnetofection, photochemical internalization or ultrasound, and biological targeting systems, including active and passive tumor targeting, have been developed. Therapeutic effects could be demonstrated with various targeted nucleic acid formulations, such as tumor-targeted DNA plasmids expressing p53 or tumor necrosis factor alpha, small interfering RNAs knocking down gene expression from tumor specific chromosomal translocations or gene expression of tumor neoangiogenic processes, as well as double stranded RNA poly inosine-cytosine which triggers apoptosis in targeted tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. L. Edelstein, M. R. Abedi, J. Wixon, and R. M. Edelstein. Gene therapy clinical trials worldwide 1989–2004—an overview. J. Gene Med. 6:597–602 (2004).

    Article  PubMed  Google Scholar 

  2. E. Wagner, R. Kircheis, and G. F. Walker. Targeted nucleic acid delivery into tumors: new avenues for cancer therapy. Biomed. Pharmacother. 58:152–161 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. S. Filleur, A. Courtin, S. Ait-Si-Ali, J. Guglielmi, C. Merle, A. Harel-Bellan, P. Clezardin, and F. Cabon. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res. 63:3919–3922 (2003).

    PubMed  CAS  Google Scholar 

  4. W. J. Kim, L. V. Christensen, S. Jo, J. W. Yockman, J. H. Jeong, Y. H. Kim, and S. W. Kim. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14:343–350 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. M. Gunther, E. Wagner, and M. Ogris. Specific targets in tumor tissue for the delivery of therapeutic genes. Curr. Med. Chem. Anticancer Agents 5:157–171 (2005).

    Article  PubMed  Google Scholar 

  6. L. Heller, K. Merkler, J. Westover, Y. Cruz, D. Coppola, K. Benson, A. Daud, and R. Heller. Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin. Cancer Res. 12:3177–3183 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. F. Sakurai, T. Terada, M. Maruyama, Y. Watanabe, F. Yamashita, Y. Takakura, and M. Hashida. Therapeutic effect of intravenous delivery of lipoplexes containing the interferon-beta gene and poly I: poly C in a murine lung metastasis model. Cancer Gene Ther. 10:661–668 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. A. Shir, M. Ogris, E. Wagner, and A. Levitzki. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 3:e6 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. A. S. Rait, K. F. Pirollo, L. Xiang, D. Ulick, and E. H. Chang. Tumor-targeting, systemically delivered antisense HER-2 chemosensitizes human breast cancer xenografts irrespective of HER-2 levels. Mol. Med. 8:475–486 (2002).

    PubMed  CAS  Google Scholar 

  10. A. Aigner, D. Fischer, T. Merdan, C. Brus, T. Kissel, and F. Czubayko. Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression. Gene Ther. 9:1700–1707 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. B. Urban-Klein, S. Werth, S. Abuharbeid, F. Czubayko, and A. Aigner. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12:461–466 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. A. Ndoye, J. L. Merlin, A. Leroux, G. Dolivet, P. Erbacher, J. P. Behr, K. Berg, and F. Guillemin. Enhanced gene transfer and cell death following p53 gene transfer using photochemical internalisation of glucosylated PEI-DNA complexes. J. Gene Med. 6:884–894 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. P. L. Felgner, Y. Barenholz, J. P. Behr, S. H. Cheng, P. Cullis, L. Huang, J. A. Jessee, L. Seymour, F. Szoka, A. R. Thierry, E. Wagner, and G. Wu. Nomenclature for synthetic gene delivery systems. Hum. Gene Ther. 8:511–512 (1997).

    PubMed  CAS  Google Scholar 

  14. S. C. De Smedt, J. Demeester, and W. E. Hennink. Cationic polymer based gene delivery systems. Pharm. Res. 17:113–126 (2000).

    Article  PubMed  Google Scholar 

  15. E. Wagner. Strategies to improve DNA polyplexes for in vivo gene transfer: will “artificial viruses” be the answer? Pharm. Res. 21:8–14 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. M. J. Tiera, F. O. Winnik, and J. C. Fernandes. Synthetic and natural polycations for gene therapy: state of the art and new perspectives. Curr. Gene Ther. 6:59–71 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. M. C. Pedroso de Lima, S. Simoes, P. Pires, H. Faneca, and N. Duzgunes. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv. Drug Deliv. Rev. 47:277–294 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. S. L. Hart. Lipid carriers for gene therapy. Curr. Drug Deliv. 2:423–428 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. M. Berton, E. Allemann, C. A. Stein, and R. Gurny. Highly loaded nanoparticulate carrier using an hydrophobic antisense oligonucleotide complex. Eur. J. Pharm. Sci. 9:163–170 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. L. Truong, S. M. Walsh, E. Schweibert, H. Q. Mao, W. B. Guggino, J. T. August, and K. W. Leong. Gene transfer by DNA-gelatin nanospheres. Arch. Biochem. Biophys. 361:47–56 (1999).

    Article  Google Scholar 

  21. H. Q. Mao, K. Roy, L. Troung, K. A. Janes, K. Y. Lin, Y. Wang, J. T. August, and K. W. Leong. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release 70:399–421 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith, and V. M. Rotello. Gold Nanoparticle-Mediated Transfection of Mammalian Cells 1035. Bioconjug. Chem. 13:3–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. C. Rudolph, U. Schillinger, A. Ortiz, K. Tabatt, C. Plank, R. H. Muller, and J. Rosenecker. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res. 21:1662–1669 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. G. Kaul and M. Amiji. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22:951–961 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. N. Toub, J. R. Bertrand, A. Tamaddon, H. Elhamess, H. Hillaireau, A. Maksimenko, J. Maccario, C. Malvy, E. Fattal, and P. Couvreur. Efficacy of siRNA nanocapsules targeted against the EWS-Fli1 oncogene in Ewing sarcoma. Pharm. Res. 23:892–900 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92:7297–7301 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. J. Vacik, B. S. Dean, W. E. Zimmer, and D. A. Dean. Cell-specific nuclear import of plasmid DNA 927. Gene Ther. 6:1006–1014 (1999).

    Article  PubMed  CAS  Google Scholar 

  28. F. McCormick. Cancer gene therapy: fringe or cutting edge? Nat. Rev. Cancer 1:130–141 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. G. U. Dachs, A. V. Patterson, J. D. Firth, P. J. Ratcliffe, K. M. Townsend, I. J. Stratford, and A. L. Harris. Targeting gene expression to hypoxic tumor cells. Nat. Med. 3:515–520 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. D. E. Hallahan, H. J. Mauceri, L. P. Seung, E. J. Dunphy, J. D. Wayne, N. N. Hanna, A. Toledano, S. Hellman, D. W. Kufe, and R. R. Weichselbaum. Spatial and temporal control of gene therapy using ionizing radiation. Nat. Med. 1:786–791 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. K. S. Lipinski, H. A. Djeha, J. Gawn, S. Cliffe, N. J. Maitland, D. H. Palmer, A. Mountain, A. S. Irvine, and C. J. Wrighton. Optimization of a synthetic beta-catenin-dependent promoter for tumor-specific cancer gene therapy. Mol. Ther. 10:150–161 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. W. H. Sun, J. K. Burkholder, J. Sun, J. Culp, J. Turner, X. G. Lu, T. D. Pugh, W. B. Ershler, and N. S. Yang. in vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc. Natl. Acad. Sci. U. S. A. 92:2889–2893 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. J. Wang, T. Murakami, Y. Hakamata, T. Ajiki, Y. Jinbu, Y. Akasaka, M. Ohtsuki, H. Nakagawa, and E. Kobayashi. Gene gun-mediated oral mucosal transfer of interleukin 12 cDNA coupled with an irradiated melanoma vaccine in a hamster model: successful treatment of oral melanoma and distant skin lesion. Cancer Gene Ther. 8:705–712 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. F. Liu, Y. Song, and D. Liu. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6:1258–1266 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. M. G. Sebestyen, V. G. Budker, T. Budker, V. M. Subbotin, G. Zhang, S. D. Monahan, D. L. Lewis, S. C. Wong, J. E. Hagstrom, and J. A. Wolff. Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J. Gene Med. 8:852–873 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. G. Acsadi, R. Anguelov, X. Li, M. K. Bates, J. A. Wolff, and H. Herweijer. Hydrodynamic Limb Vein Delivery of Naked IGF-1 Plasmid DNA Provides Therapeutic Benefit in SOD1(G93A) Murine ALS Model. Mol. Ther. 13(Suppl. 1):S161 (2006).

    Article  Google Scholar 

  37. D. J. Wells. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 11:1363–1369 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. S. Brunner, E. Furtbauer, T. Sauer, M. Kursa, and E. Wagner. Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol. Ther. 5:80–86 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1:841–845 (1982).

    PubMed  CAS  Google Scholar 

  40. H. R. Mellor, L. A. Davies, H. Caspar, C. R. Pringle, S. C. Hyde, D. R. Gill, and R. Callaghan. Optimising non-viral gene delivery in a tumour spheroid model. J. Gene Med. 8:1160–1170 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. H. Aihara and J. Miyazaki. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16:867–870 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. I. Mathiesen. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther. 6:508–514 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. T. Goto, T. Nishi, T. Tamura, S. B. Dev, H. Takeshima, M. Kochi, K. Yoshizato, J. Kuratsu, T. Sakata, G. A. Hofmann, and Y. Ushio. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene 843. Proc. Natl. Acad. Sci. U. S. A. 97:354–359 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. L. Zhang, E. Nolan, S. Kreitschitz, and D. P. Rabussay. Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim. Biophys. Acta 1572:1–9 (2002).

    PubMed  CAS  Google Scholar 

  45. L. Heller, M. J. Jaroszeski, D. Coppola, C. Pottinger, R. Gilbert, and R. Heller. Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo 959. Gene Ther. 7:826–829 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. C. Magin-Lachmann, G. Kotzamanis, L. D’Aiuto, H. Cooke, C. Huxley, and E. Wagner. In vitro and in vivo delivery of intact BAC DNA-comparison of different methods. J. Gene Med. 6:195–209 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. M. Tangney, G. Casey, J. O. Larkin, C. G. Collins, D. Soden, J. Cashman, M. C. Whelan, and G. C. O’sullivan. Non-viral in vivo immune gene therapy of cancer: combined strategies for treatment of systemic disease. Cancer Immunol. Immunother. 55:1443–1450 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. D. M. Soden, J. O. Larkin, C. G. Collins, M. Tangney, S. Aarons, J. Piggott, A. Morrissey, C. Dunne, and G. C. O’sullivan. Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours. Cancer Lett. 232:300–310 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. M. L. Lucas, L. Heller, D. Coppola, and R. Heller. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol. Ther. 5:668–675 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. L. C. Heller and R. Heller. In vivo electroporation for gene therapy. Hum. Gene Ther. 17:890–897 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Kruger, B. Gansbacher, and C. Plank. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9:102–109 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. S. Xenariou, U. Griesenbach, S. Ferrari, P. Dean, R. K. Scheule, S. H. Cheng, D. M. Geddes, C. Plank, and E. W. Alton. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther. 13:1545–1552 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med. 6:923–936 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. D. L. Miller, S. V. Pislaru, and J. E. Greenleaf. Sonoporation: mechanical DNA delivery by ultrasonic cavitation. Somat. Cell Mol. Genet. 27:115–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. R. K. Schlicher, H. Radhakrishna, T. P. Tolentino, R. P. Apkarian, V. Zarnitsyn, and M. R. Prausnitz. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med. Biol. 32:915–924 (2006).

    Article  PubMed  Google Scholar 

  56. P. E. Huber and P. Pfisterer. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther. 7:1516–1525 (2000).

    Article  PubMed  CAS  Google Scholar 

  57. Y. Manome, M. Nakamura, T. Ohno, and H. Furuhata. Ultrasound facilitates transduction of naked plasmid DNA into colon carcinoma cells in vitro and in vivo 990. Hum. Gene Ther. 11:1521–1528 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. K. Anwer, G. Kao, B. Proctor, I. Anscombe, V. Florack, R. Earls, E. Wilson, T. McCreery, E. Unger, A. Rolland, and S. M. Sullivan. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther. 7:1833–1839 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. E. C. Unger, E. Hersh, M. Vannan, T. O. Matsunaga, and T. McCreery. Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44:45–54 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. E. C. Unger, T. O. Matsunaga, T. McCreery, P. Schumann, R. Sweitzer, and R. Quigley. Therapeutic applications of microbubbles. Eur. J. Radiol. 42:160–168 (2002).

    Article  PubMed  Google Scholar 

  61. Y. Taniyama, K. Tachibana, K. Hiraoka, M. Aoki, S. Yamamoto, K. Matsumoto, T. Nakamura, T. Ogihara, Y. Kaneda, and R. Morishita. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 9:372–380 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. P. A. Frenkel, S. Chen, T. Thai, R. V. Shohet, and P. A. Grayburn. DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. Ultrasound Med. Biol. 28:817–822 (2002).

    Article  PubMed  Google Scholar 

  63. T. Li, K. Tachibana, M. Kuroki, and M. Kuroki. Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice-initial results. Radiology 229:423–428 (2003).

    Article  PubMed  Google Scholar 

  64. P. Hauff, S. Seemann, R. Reszka, M. Schultze-Mosgau, M. Reinhardt, T. Buzasi, T. Plath, S. Rosewicz, and M. Schirner. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models. Radiology 236:572–578 (2005).

    Article  PubMed  Google Scholar 

  65. S. Seemann, P. Hauff, M. Schultze-Mosgau, C. Lehmann, and R. Reszka. Pharmaceutical evaluation of gas-filled microparticles as gene delivery system. Pharm. Res. 19:250–257 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. A. Hogset, L. Prasmickaite, B. O. Engesaeter, M. Hellum, P. K. Selbo, V. M. Olsen, G. M. Maelandsmo, and K. Berg. Light directed gene transfer by photochemical internalisation. Curr. Gene Ther. 3:89–112 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. L. Prasmickaite, A. Hogset, T. E. Tjelle, V. M. Olsen, and K. Berg. Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). J. Gene Med. 2:477–488 (2000).

    Article  PubMed  CAS  Google Scholar 

  68. M. Hellum, A. Hogset, B. O. Engesaeter, L. Prasmickaite, T. Stokke, C. Wheeler, and K. Berg. Photochemically enhanced gene delivery with cationic lipid formulations. Photochem. Photobiol. Sci. 2:407–411 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. J. Kloeckner, L. Prasmickaite, A. Hogset, K. Berg, and E. Wagner. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J. Drug Target. 12:205–213 (2004).

    Article  PubMed  CAS  Google Scholar 

  70. A. Ndoye, G. Dolivet, A. Hogset, A. Leroux, A. Fifre, P. Erbacher, K. Berg, J. P. Behr, F. Guillemin, and J. L. Merlin. Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization. Mol. Ther. 13:1156–1162 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. M. Schlemmer, L. H. Lindner, S. Abdel-Rahman, and R. D. Issels. Principles, technology and indication of hyperthermia and part body hyperthermia. Radiologe 44:301–309 (2004).

    Article  PubMed  CAS  Google Scholar 

  72. G. Kong, G. Anyarambhatla, W. P. Petros, R. D. Braun, O. M. Colvin, D. Needham, and M. W. Dewhirst. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 60:6950–6957 (2000).

    PubMed  CAS  Google Scholar 

  73. L. H. Lindner, M. E. Eichhorn, H. Eibl, N. Teichert, M. Schmitt-Sody, R. D. Issels, and M. Dellian. Novel temperature-sensitive liposomes with prolonged circulation time. Clin. Cancer Res. 10:2168–2178 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. M. H. Gaber, N. Z. Wu, K. Hong, S. K. Huang, M. W. Dewhirst, and D. Papahadjopoulos. Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 36:1177–1187 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. E. Chang, S. Chalikonda, J. Friedl, H. Xu, G. Q. Phan, F. M. Marincola, H. R. Alexander, and D. L. Bartlett. Targeting vaccinia to solid tumors with local hyperthermia. Hum. Gene Ther. 16:435–444 (2005).

    Article  PubMed  CAS  Google Scholar 

  76. A. Zintchenko, M. Ogris, and E. Wagner. Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug. Chem. 17:766–772 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. H. Maeda. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41:189–207 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. I. Brigger, C. Dubernet, and P. Couvreur. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54:631–651 (2002).

    Article  PubMed  CAS  Google Scholar 

  79. T. M. Allen and P. R. Cullis. Drug delivery systems: entering the mainstream. Science 303:1818–1822 (2004).

    Article  PubMed  CAS  Google Scholar 

  80. M. A. Monck, A. Mori, D. Lee, P. Tam, J. J. Wheeler, P. R. Cullis, and P. Scherrer. Stabilized plasmid-lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection. J. Drug Target. 7:439–452 (2000).

    Article  PubMed  CAS  Google Scholar 

  81. E. Ambegia, S. Ansell, P. Cullis, J. Heyes, L. Palmer, and I. MacLachlan. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim. Biophys. Acta 1669:155–163 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999).

    Article  PubMed  CAS  Google Scholar 

  83. D. Oupicky, M. Ogris, K. A. Howard, P. R. Dash, K. Ulbrich, and L. W. Seymour. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation 1. Mol. Ther. 5:463–472 (2002).

    Article  PubMed  CAS  Google Scholar 

  84. M. Kursa, G. F. Walker, V. Roessler, M. Ogris, W. Roedl, R. Kircheis, and E. Wagner. Novel Shielded Transferrin-Polyethylene Glycol-Polyethylenimine/DNA Complexes for Systemic Tumor-Targeted Gene Transfer. Bioconjug. Chem. 14:222–231 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. M. Ogris, G. Walker, T. Blessing, R. Kircheis, M. Wolschek, and E. Wagner. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J. Control. Release 91:173–181 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. G. F. Walker, C. Fella, J. Pelisek, J. Fahrmeir, S. Boeckle, M. Ogris, and E. Wagner. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol. Ther. 11:418–425 (2005).

    Article  PubMed  CAS  Google Scholar 

  87. X. Guo and F. C. Szoka, Jr. Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 36:335–341 (2003).

    Article  PubMed  CAS  Google Scholar 

  88. J. Shin, P. Shum, and D. H. Thompson. Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids. J. Control. Release 91:187–200 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. C. Masson, M. Garinot, N. Mignet, B. Wetzer, P. Mailhe, D. Scherman, and M. Bessodes. pH-sensitive PEG lipids containing orthoester linkers: new potential tools for nonviral gene delivery. J. Control. Release 99:423–434 (2004).

    Article  PubMed  CAS  Google Scholar 

  90. H. Hatakeyama, H. Akita, K. Kogure, M. Oishi, Y. Nagasaki, Y. Kihira, M. Ueno, H. Kobayashi, H. Kikuchi, and H. Harashima. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 14:68–77 (2007).

    Article  PubMed  CAS  Google Scholar 

  91. M. Meyer and E. Wagner. pH-responsive shielding of non-viral gene vectors. Expert. Opin. Drug Deliv. 3:563–571 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. X. Guo and F. C. Szoka, Jr. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug. Chem. 12:291–300 (2001).

    Article  PubMed  CAS  Google Scholar 

  93. W. Li, Z. Huang, J. A. MacKay, S. Grube, and F. C. Szoka, Jr. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7:67–79 (2005).

    Article  PubMed  CAS  Google Scholar 

  94. N. Murthy, J. Campbell, N. Fausto, A. S. Hoffman, and P. S. Stayton. Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Control. Release 89:365–374 (2003).

    Article  PubMed  CAS  Google Scholar 

  95. N. Murthy, J. Campbell, N. Fausto, A. S. Hoffman, and P. S. Stayton. Bioinspired pH-Responsive Polymers for the Intracellular Delivery of Biomolecular Drugs. Bioconjug. Chem. 14:412–419 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. T. S. Zimmermann, A. C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Rohl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manoharan, H. P. Vornlocher, and I. MacLachlan. RNAi-mediated gene silencing in non-human primates. Nature 441:111–114 (2006).

    Article  PubMed  CAS  Google Scholar 

  97. M. Oishi, F. Nagatsugi, S. Sasaki, Y. Nagasaki, and K. Kataoka. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages. Chembiochem. 6:718–725 (2005).

    Article  PubMed  CAS  Google Scholar 

  98. M. Oishi, S. Sasaki, Y. Nagasaki, and K. Kataoka. pH-responsive oligodeoxynucleotide (ODN)-poly(ethylene glycol) conjugate through acid-labile beta-thiopropionate linkage: preparation and polyion complex micelle formation. Biomacromolecules 4:1426–1432 (2003).

    Article  PubMed  CAS  Google Scholar 

  99. H. Li and Z. M. Qian. Transferrin/transferrin receptor-mediated drug delivery. Med. Res. Rev. 22:225–250 (2002).

    Article  PubMed  CAS  Google Scholar 

  100. L. Xu, K. F. Pirollo, W. H. Tang, A. Rait, and E. H. Chang. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther. 10:2941–2952 (1999).

    Article  PubMed  CAS  Google Scholar 

  101. R. Kircheis, L. Wightman, A. Schreiber, B. Robitza, V. Rossler, M. Kursa, and E. Wagner. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8:28–40 (2001).

    Article  PubMed  CAS  Google Scholar 

  102. E. Wagner, M. Zenke, M. Cotten, H. Beug, and M. L. Birnstiel. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc. Natl. Acad. Sci. U. S. A. 87:3410–3414 (1990).

    Article  PubMed  CAS  Google Scholar 

  103. R. Kircheis, A. Kichler, G. Wallner, M. Kursa, M. Ogris, T. Felzmann, M. Buchberger, and E. Wagner. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. 4:409–418 (1997).

    Article  PubMed  CAS  Google Scholar 

  104. R. Kircheis, T. Blessing, S. Brunner, L. Wightman, and E. Wagner. Tumor targeting with surface-shielded ligand-polycation DNA complexes. J. Control. Release 72:165–170 (2001).

    Article  PubMed  CAS  Google Scholar 

  105. R. Kircheis, E. Ostermann, M. F. Wolschek, C. Lichtenberger, C. Magin-Lachmann, L. Wightman, M. Kursa, and E. Wagner. Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther. 9:673–680 (2002).

    Article  PubMed  CAS  Google Scholar 

  106. L. Xu, C. C. Huang, W. Huang, W. H. Tang, A. Rait, Y. Z. Yin, I. Cruz, L. M. Xiang, K. F. Pirollo, and E. H. Chang. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther. 1:337–346 (2002).

    PubMed  CAS  Google Scholar 

  107. D. Tros, I. M. A. Arangoa, M. J. Moreno-Aliaga, and N. Duzgunes. Enhanced gene delivery in vitro and in vivo by improved transferrin-lipoplexes. Biochim. Biophys. Acta 1561:209–221 (2002).

    Article  Google Scholar 

  108. I. J. Hildebrandt, M. Iyer, E. Wagner, and S. S. Gambhir. Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther. 10:758–764 (2003).

    Article  PubMed  CAS  Google Scholar 

  109. W. Yu, K. F. Pirollo, A. Rait, B. Yu, L. M. Xiang, W. Q. Huang, Q. Zhou, G. Ertem, and E. H. Chang. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther. 11:1434–1440 (2004).

    Article  PubMed  CAS  Google Scholar 

  110. M. T. da Cruz, A. L. Cardoso, L. P. de Almeida, S. Simoes, and M. C. de Lima. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther. 12:1242–1252 (2005).

    Article  PubMed  CAS  Google Scholar 

  111. B. Smrekar, L. Wightman, M. F. Wolschek, C. Lichtenberger, R. Ruzicka, M. Ogris, W. Rodl, M. Kursa, E. Wagner, and R. Kircheis. Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Ther. 10:1079–1088 (2003).

    Article  PubMed  CAS  Google Scholar 

  112. S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65:8984–8992 (2005).

    Article  PubMed  CAS  Google Scholar 

  113. E. Song, P. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco, and J. Lieberman. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23:709–717 (2005).

    Article  PubMed  CAS  Google Scholar 

  114. J. Chen, S. Gamou, A. Takayanagi, and N. Shimizu. A novel gene delivery system using EGF receptor-mediated endocytosis 97. FEBS Lett. 338:167–169 (1994).

    Article  PubMed  CAS  Google Scholar 

  115. T. Blessing, M. Kursa, R. Holzhauser, R. Kircheis, and E. Wagner. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug. Chem. 12:529–537 (2001).

    Article  PubMed  CAS  Google Scholar 

  116. J. Kloeckner, S. Boeckle, D. Persson, W. Roedl, M. Ogris, K. Berg, and E. Wagner. DNA polyplexes based on degradable oligoethylenimine-derivatives: Combination with EGF receptor targeting and endosomal release functions. J. Control. Release 116:115–222 (2006).

    Article  PubMed  CAS  Google Scholar 

  117. M. F. Wolschek, C. Thallinger, M. Kursa, V. Rossler, M. Allen, C. Lichtenberger, R. Kircheis, T. Lucas, M. Willheim, W. Reinisch, A. Gangl, E. Wagner, and B. Jansen. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 36:1106–1114 (2002).

    Article  PubMed  CAS  Google Scholar 

  118. A. R. Hilgenbrink and P. S. Low. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J. Pharm. Sci. 94:2135–2146 (2005).

    Article  PubMed  CAS  Google Scholar 

  119. W. Guo and R. J. Lee. Receptor-Targeted Gene Delivery Via Folate-Conjugated Polyethylenimine. AAPS Pharmsci 1:Article 19 (1999).

    Google Scholar 

  120. W. Guo and R. J. Lee. Efficient gene delivery using anionic liposome-complexed polyplexes (LPDII). Biosci. Rep. 20:419–432 (2000).

    Article  PubMed  CAS  Google Scholar 

  121. H. E. Hofland, C. Masson, S. Iginla, I. Osetinsky, J. A. Reddy, C. P. Leamon, D. Scherman, M. Bessodes, and P. Wils. Folate-targeted gene transfer in vivo. Mol. Ther. 5:739–744 (2002).

    Article  PubMed  CAS  Google Scholar 

  122. Y. Hattori, M. Sakaguchi, and Y. Maitani. Folate-linked lipid-based nanoparticles deliver a NFkappaB decoy into activated murine macrophage-like RAW264.7 cells. Biol. Pharm. Bull. 29:1516–1520 (2006).

    Article  PubMed  CAS  Google Scholar 

  123. R. Pasqualini, E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60:722–727 (2000).

    PubMed  CAS  Google Scholar 

  124. A. Erdreich-Epstein, H. Shimada, S. Groshen, M. Liu, L. S. Metelitsa, K. S. Kim, M. F. Stins, R. C. Seeger, and D. L. Durden. Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res. 60:712–721 (2000).

    PubMed  CAS  Google Scholar 

  125. R. P. Harbottle, R. G. Cooper, S. L. Hart, A. Ladhoff, T. McKay, A. M. Knight, E. Wagner, A. D. Miller, and C. Coutelle. An RGD-oligolysine peptide: a prototype construct for integrin-mediated gene delivery. Hum. Gene Ther. 9:1037–1047 (1998).

    PubMed  CAS  Google Scholar 

  126. P. Erbacher, J. S. Remy, and J. P. Behr. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway 825. Gene Ther. 6:138–145 (1999).

    Article  PubMed  CAS  Google Scholar 

  127. W. Suh, S. O. Han, L. Yu, and S. W. Kim. An angiogenic, endothelial-cell-targeted polymeric gene carrier 1. Mol. Ther. 6:664–672 (2002).

    Article  PubMed  CAS  Google Scholar 

  128. K. Kunath, T. Merdan, O. Hegener, H. Haberlein, and T. Kissel. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J. Gene Med. 5:588–599 (2003).

    Article  PubMed  CAS  Google Scholar 

  129. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).

    Article  PubMed  Google Scholar 

  130. H. Fujii, M. Nakajima, I. Saiki, J. Yoneda, I. Azuma, and T. Tsuruo. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin. Exp. Metastasis 13:337–344 (1995).

    Article  PubMed  CAS  Google Scholar 

  131. S. Moffatt, S. Wiehle, and R. J. Cristiano. Tumor-specific gene delivery mediated by a novel peptide-polyethylenimine-DNA polyplex targeting aminopeptidase N/CD13. Hum. Gene Ther. 16:57–67 (2005).

    Article  PubMed  CAS  Google Scholar 

  132. S. Moffatt, S. Wiehle, and R. J. Cristiano. A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Ther. 13:1512–1523 (2006).

    Article  PubMed  CAS  Google Scholar 

  133. G. J. Nabel, E. G. Nabel, Z. Y. Yang, B. A. Fox, G. E. Plautz, X. Gao, L. Huang, S. Shu, D. Gordon, and A. E. Chang. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans 118. Proc. Natl. Acad. Sci. U. S. A. 90:11307–11311 (1993).

    Article  PubMed  CAS  Google Scholar 

  134. A. T. Stopeck, A. Jones, E. M. Hersh, J. A. Thompson, D. M. Finucane, J. C. Gutheil, and R. Gonzalez. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin. Cancer Res. 7:2285–2291 (2001).

    PubMed  CAS  Google Scholar 

  135. M. Bergen, R. Chen, and R. Gonzalez. Efficacy and safety of HLA-B7/beta-2 microglobulin plasmid DNA/lipid complex (Allovectin-7) in patients with metastatic melanoma. Expert. Opin. Biol. Ther. 3:377–384 (2003).

    PubMed  CAS  Google Scholar 

  136. E. Galanis, P. A. Burch, R. L. Richardson, B. Lewis, H. C. Pitot, S. Frytak, C. Spier, E. T. Akporiaye, P. P. Peethambaram, J. S. Kaur, S. H. Okuno, K. K. Unni, and J. Rubin. Intratumoral administration of a 1,2-dimyristyloxypropyl-3- dimethylhydroxyethyl ammonium bromide/dioleoylphosphatidylethanolamine formulation of the human interleukin-2 gene in the treatment of metastatic renal cell carcinoma. Cancer 101:2557–2566 (2004).

    Article  PubMed  CAS  Google Scholar 

  137. S. Dow, R. Elmslie, I. Kurzman, G. MacEwen, F. Pericle, and D. Liggitt. Phase I study of liposome-DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum. Gene Ther. 16:937–946 (2005).

    Article  PubMed  CAS  Google Scholar 

  138. P. Ohana, O. Gofrit, S. Ayesh, W. Al-Sharef, A. Mizrahi, T. Birman, T. Schneider, I. Matouk, N. de Groot, E. Tavdy, A. A. Sidi, and A. Hochberg. Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther. Mol. Biol. 8:181–192 (2004).

    Google Scholar 

  139. K. Mechtler and E. Wagner. Gene transfer mediated by influenza virus peptides: the role of peptide sequence. New J. Chem. 21:105–111 (1997).

    CAS  Google Scholar 

  140. M. Ogris, R. C. Carlisle, T. Bettinger, and L. W. Seymour. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J. Biol. Chem. 276:47550–47555 (2001).

    Article  PubMed  CAS  Google Scholar 

  141. G. Saito, G. L. Amidon, and K. D. Lee. Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potential. Gene Ther. 10:72–83 (2003).

    Article  PubMed  CAS  Google Scholar 

  142. S. Boeckle, J. Fahrmeir, W. Roedl, M. Ogris, and E. Wagner. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J. Control. Release 112:240–248 (2006).

    Article  PubMed  CAS  Google Scholar 

  143. D. Lechardeur and G. L. Lukacs. Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum. Gene Ther. 17:882–889 (2006).

    Article  PubMed  CAS  Google Scholar 

  144. C. Plank, K. Mechtler, F. C. Szoka, Jr., and E. Wagner. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437–1446 (1996).

    PubMed  CAS  Google Scholar 

  145. S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, and M. Ogris. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med. 6:1102–1111 (2004).

    Article  PubMed  CAS  Google Scholar 

  146. M. A. Gosselin, W. Guo, and R. J. Lee. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine 1032. Bioconjug. Chem. 12:989–994 (2001).

    Article  PubMed  CAS  Google Scholar 

  147. E. Dauty, J. S. Remy, T. Blessing, and J. P. Behr. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture 106. J. Am. Chem. Soc. 123:9227–9234 (2001).

    Article  PubMed  CAS  Google Scholar 

  148. G. Saito, J. A. Swanson, and K. D. Lee. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev. 55:199–215 (2003).

    Article  PubMed  CAS  Google Scholar 

  149. M. L. Read, S. Singh, Z. Ahmed, M. Stevenson, S. S. Briggs, D. Oupicky, L. B. Barrett, R. Spice, M. Kendall, M. Berry, J. A. Preece, A. Logan, and L. W. Seymour. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33:e86 (2005).

    Article  PubMed  CAS  Google Scholar 

  150. C. Chen, J. Kim, E. Steenblock, D. Liu, and K. G. Rice. Gene transfer with poly-melittin peptides. Bioconjug. Chem. 17:1057–1062 (2006).

    Article  PubMed  CAS  Google Scholar 

  151. A. Aissaoui, B. Martin, E. Kan, N. Oudrhiri, M. Hauchecorne, J. P. Vigneron, J. M. Lehn, and P. Lehn. Novel cationic lipids incorporating an acid-sensitive acylhydrazone linker: synthesis and transfection properties. J. Med. Chem. 47:5210–5223 (2004).

    Article  PubMed  CAS  Google Scholar 

  152. Y. B. Lim, S. M. Kim, H. Suh, and J. S. Park. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug. Chem. 13:952–957 (2002).

    Article  PubMed  CAS  Google Scholar 

  153. A. Akinc, D. G. Anderson, D. M. Lynn, and R. Langer. Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug. Chem. 14:979–988 (2003).

    Article  PubMed  CAS  Google Scholar 

  154. M. L. Forrest, J. T. Koerber, and D. W. Pack. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem. 14:934–940 (2003).

    Article  PubMed  CAS  Google Scholar 

  155. D. G. Anderson, W. Peng, A. Akinc, N. Hossain, A. Kohn, R. Padera, R. Langer, and J. A. Sawicki. A polymer library approach to suicide gene therapy for cancer. Proc. Natl. Acad. Sci. U. S. A. 101:16028–16033 (2004).

    Article  PubMed  CAS  Google Scholar 

  156. Y. H. Kim, J. H. Park, M. Lee, Y. H. Kim, T. G. Park, and S. W. Kim. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J. Control. Release 103:209–219 (2005).

    Article  PubMed  CAS  Google Scholar 

  157. D. G. Anderson, A. Akinc, N. Hossain, and R. Langer. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol. Ther. 11:426–434 (2005).

    Article  PubMed  CAS  Google Scholar 

  158. Z. Zhong, Y. Song, J. F. Engbersen, M. C. Lok, W. E. Hennink, and J. Feijen. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J. Control. Release 109:317–329 (2005).

    Article  PubMed  CAS  Google Scholar 

  159. T. I. Kim, H. J. Seo, J. S. Choi, J. K. Yoon, J. U. Baek, K. Kim, and J. S. Park. Synthesis of biodegradable cross-linked poly(beta-amino ester) for gene delivery and its modification, inducing enhanced transfection efficiency and stepwise degradation. Bioconjug. Chem. 16:1140–1148 (2005).

    Article  PubMed  CAS  Google Scholar 

  160. J. Kloeckner, E. Wagner, and M. Ogris. Degradable gene carriers based on oligomerized polyamines. Eur. J. Pharm. Sci. 29:414–425 (2006).

    Article  PubMed  CAS  Google Scholar 

  161. J. Kloeckner, S. Bruzzano, M. Ogris, and E. Wagner. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: effect of chemical structure of polymer on biological properties. Bioconjug. Chem. 17:1339–1345 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Olga Brück for skillful assistance in preparing the manuscript. Funding by DFG SFB486, DFG cluster of excellence ‘NIM’, and EC FP6 project ‘GIANT’ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russ, V., Wagner, E. Cell and Tissue Targeting of Nucleic Acids for Cancer Gene Therapy. Pharm Res 24, 1047–1057 (2007). https://doi.org/10.1007/s11095-006-9233-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9233-9

Key words

Navigation