Skip to main content

Tissue-Specific Drug Delivery Platforms Based on DNA Nanoparticles

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

While nucleic acids are naturally employed as carriers of genetic information based on the base pairs, they can be used as programmable materials with the base complementarity to prepare nanoparticles. Nucleic acid nanoparticles (NANPs) are highly biocompatible, and their size and shape are easily controllable via base-pairing sequences. Due to such properties of NANPs distinguished from those of other nanomaterials, they are promising candidates as drug delivery carriers. In particular, the structural features of NANPs can be fine-tuned at subnanometer resolution for the specific conditions required for biodistribution to a target tissue, thereby providing opportunities to overcome biological hurdles that hinder tissue-specific drug delivery. In this chapter, we describe major strategies to fabricate NANPs suitable for in vivo drug delivery and recent efforts to develop tissue-specific NANPs targeting important disease-related tissues such as tumors, liver, lungs, kidney, and brain and their applications for targeted systemic drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Afonin KA, Dobrovolskaia MA, Church G, Bathe M (2020) Opportunities, barriers and a stratagy for overcoming translational challenges to therapeutic nucleic acid nanotechnology. ACS Nano 14(8):9221–9227

    Article  CAS  Google Scholar 

  • Akin A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah DWY, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles A, Maier MA (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18(7):1357–1364

    Article  Google Scholar 

  • Anastassacos FM, Zhao Z, Zeng Y, Shih WM (2020) Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. J Am Chem Soc 142(7):3311–3315

    Article  CAS  Google Scholar 

  • Benson E, Mohammed A, Gardell J, Masich S, Czeizler E, Orponen P, Hogberg B (2015) DNA tendering of polyhedral meshes at the nanoscale. Nature 523:441–444

    Article  CAS  Google Scholar 

  • Bousmail D, Amrein L, Fakhoury JJ, Fakih HH, Hsu JC, Panasci L, Sleiman HF (2017) Precision spherical nucleic acids for delivery of anticancer drugs. Chem Sci 8(9):6218–6229

    Article  CAS  Google Scholar 

  • Chandrasekaran AR (2021) Nuclease resistance of DNA nanostructures. Nat Rev Chem 5:225–239

    Article  CAS  Google Scholar 

  • Chandrasekaran AR, Vilcapoma J, Dey P, Wong-Deyrup SW, Dey BK, Halvorsen K (2020) Exceptional nuclease resistance of paranemic crossover (PX) DNA and crossover-dependent biostability of DNA motifs. J Am Chem Soc 142(14):6814–6821

    Article  CAS  Google Scholar 

  • Chang X, Hu S, Gao Z-H, Wang L, Luo M-X, Yu X, Li B-F, Shen Z, Wu Z-S (2021) Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat Commun 12:2928

    Article  Google Scholar 

  • Comper WD, Glasgow EF (1995) Charge selectivity in kidney ultrafiltration. Kidney Int 47(5):1242–1251

    Article  CAS  Google Scholar 

  • Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134(3):1376–1391

    Article  CAS  Google Scholar 

  • Dilliard SA, Cheong Q, Siegwart DJ (2021) On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci 118(44):e2109256118

    Article  CAS  Google Scholar 

  • Ding H, Li J, Chen N, Hu X, Yang X, Guo L, Li Q, Zuo X, Wang L, Ma Y, Fan C (2018) DNA nanostructure-programmed like-charge attraction at the cell-membrane interface. ACS Cent Sci 4(10):1344–1351

    Article  CAS  Google Scholar 

  • Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J (2017) Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometer regime. Nat Nanotechnol 12(11):1096–1102

    Article  CAS  Google Scholar 

  • Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Tuberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754):1661–1665

    Article  CAS  Google Scholar 

  • Guo S, Vieweger M, Zhang K, Yin H, Wang H, Li X, Li S, Hu S, Sparreboom A, Evers BM, Dong Y, Chiu W, Guo P (2020) Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat Commun 11:972

    Article  CAS  Google Scholar 

  • Han X, Jiang Y, Li S, Zhang Y, Ma X, Wu Z, Wu Z, Qi X (2019) Multivalent aptamer-modified tetrahedral DNA nanocage demonstrates high selectivity and safety for anti-tumor therapy. Nanoscale 11:339–347

    Article  CAS  Google Scholar 

  • Hu Y, Chen Z, Zhang H, Li M, Hou Z, Luo X, Xue X (2017) Development of DNA tetrahedron-based drug delivery system. Drug Deliv 24(1):1295–1301

    Article  CAS  Google Scholar 

  • Hu Q, Li H, Wang L, Gu H, Fan C (2019) DNA nanotechnology-enabled drug delivery systems. Chem Rev 119(10):6459–6506

    Article  CAS  Google Scholar 

  • Huang X, Ma Y, Li Y, Han F, Lin W (2021) Targeted drug delivery systems for kidney diseases. Front Bioeng Biotechnol 9:683247

    Article  Google Scholar 

  • Jang M, Kim JH, Nam HY, Kwon IC, Ahn HJ (2015) Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat Commun 6:7930

    Article  CAS  Google Scholar 

  • Jasinski DL, Li H, Guo P (2018) The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther 26(3):784–792

    Article  CAS  Google Scholar 

  • Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Trans Med 5(209):209ra152

    Article  Google Scholar 

  • Jiang D, Ge Z, Im H-J, England CG, Ni D, Hou J, Zhang L, Kutyreff CJ, Yan Y, Liu Y, Cho SY, Engle JW, Shi J, Huang P, Fan C, Yan H, Cai W (2018a) Nat Biomed Eng 2(11):865–877

    Article  CAS  Google Scholar 

  • Jiang Q, Liu S, Liu J, Wang Z-G, Ding B (2018b) Rationally designed DNA-origami nanomaterials for drug delivery in vivo. Adv Mater 31(45):1804785

    Article  Google Scholar 

  • Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, Qian R, Zheng M, Shi B (2021) Cation-free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy. Adv Mater 33(45):e2104779

    Article  Google Scholar 

  • Kamaly N, He JC, Ausiello DA, Farokhzad OC (2016) Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 12(12):738–753

    Article  CAS  Google Scholar 

  • Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183

    Article  CAS  Google Scholar 

  • Kim K-R, Lee T, Kim B-S, Ahn D-R (2014) Utilizing the bioorthogonal base-pairing system of L-DNA to design ideal DNA nanocarriers for enhanced delivery of nucleic acid cargos. Chem Sci 5:1533–1537

    Article  CAS  Google Scholar 

  • Kim K-R, Kim HY, Lee Y-D, Ha JS, Kang JH, Jeong H, Bang D, Ko YT, Kim S, Lee H, Ahn D-R (2016) J Control Release 243:121–131

    Article  CAS  Google Scholar 

  • Kim K-R, Hwang D, Kim J, Lee C-Y, Lee W, Yoon DS, Shin D, Min S-J, Kwon IC, Chung HS, Ahn D-R (2018a) Streptavidin-mirror DNA tetrahedron hybrid as a platform for intracellular and tumor delivery of enzymes. J Control Release 280:1–10

    Article  CAS  Google Scholar 

  • Kim K-R, Rothlisberger P, Kang SJ, Nam K, Lee S, Hollenstein M, Ahn D-R (2018b, 1833) Shaping rolling circle amplification products into DNA nanoparticles by incorporation of modified nucleotides and their application to in vitro and in vivo delivery of photosensitizer. Molecules 23(7)

    Google Scholar 

  • Kim K-R, Kang SJ, Lee A-Y, Hwang D, Park M, Park H, Kim S, Hur K, Chung HS, Mao C, Ahn D-R (2019) Highly tumor-specific DNA nanostructures discovered by in vivo screening of a nucleic acid cage library and their applications in tumor-targeted drug delivery. Biomaterials 195:1–12

    Article  CAS  Google Scholar 

  • Kim J, Jeon S, Kang SJ, Kim K-R, Thai HBD, Lee S, Kim S, Lee Y-S, Ahn D-R (2020a) Lung-targeted delivery of TGF-b antisense oligonucleotides to treat pulmonary fibrosis. J Control Release 322:108–121

    Article  CAS  Google Scholar 

  • Kim K-R, Jegal H, Kim J, Ahn D-R (2020b) A self-assembled DNA tetrahedron as a carrier for in vivo liver-specific delivery of siRNA. Biomater Sci 8(2):586–590

    Article  CAS  Google Scholar 

  • Kim K-R, Kim J, Back JH, Lee JE, Ahn D-R (2022) Cholesterol-mediated seeding of protein corona on DNA nanostructures for targeted delivery of oligonucleotide therapeutics to treat liver fibrosis. ACS Nano 16(5):7331–7843

    Article  CAS  Google Scholar 

  • Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, Tate M, Schwartz M, Zuckerman L, Lezon R, Lukas RV, Javonovic B, McCortney K, Colman H, Chen S, Lai B, Antipova O, Deng J, Li L, Tommasini-Ghelfi S, Hurley LA, Unruh D, Sharma NV, Kandpal M, Kouri FM, Davuluri RV, Brat DJ, Muzzio M, Glass M, Vijayakumar V, Heidel J, Giles FJ, Adams AK, James CD, Woloschak GE, Horbinski C, Stegh AH (2021) A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med 13(584):eabb3945

    Article  CAS  Google Scholar 

  • Kutscher HL, Chao P, Deshmukh M, Singh Y, Hu P, Joseph LB, Reimer DC, Stein S, Laskin DL, Sinko PJ (2010) Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release 143(1):31–37

    Article  CAS  Google Scholar 

  • Lee H, Lytton-Jean AKR, Love KT, Park AI, Karagiannis ED, Sehgal A, Querbes W, Zurenko CS, Jayaraman M, Peng CG, Charisse K, Borodovsky A, Manoharan M, Donahoe JS, Truelove J, Nahrendorf M, Langer R, Anderson DG (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  CAS  Google Scholar 

  • Lee JH, Ku SH, Kim MJ, Lee SJ, Kim HC, Kim K, Kim SH, Kwon IC (2017a) Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery. J Control Release 263:29–38

    Article  CAS  Google Scholar 

  • Lee JS, Kim H, Jo C, Jeong J, Ko J, Han S, Lee MS, Lee H-Y, Han JW, Lee J, Lee JB (2017b) Enzyme-driven hasselback-like DNA-based inorganic superstructures. Adv Funct Mater 27(45):1704213

    Article  Google Scholar 

  • Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han J-Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264

    Article  CAS  Google Scholar 

  • Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q (2021) The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 129:57–72

    Article  CAS  Google Scholar 

  • Lilley DMJ, Clegg RM (1993) The structure of the four-way junction in DNA. Annu Rev Biophys Biomol Struct 22:299–328

    Article  CAS  Google Scholar 

  • Liu J, Song L, Liu S, Jiang Q, Liu Q, Li N, Wang Z-G, Ding B (2018a) A DNA-based nanocarrier for efficient gene delivery and combined cancer tehrapy. Nano Lett 18(6):3328–3334

    Article  CAS  Google Scholar 

  • Liu J, Song L, Liu S, Zhao S, Jiang Q, Ding B (2018b) A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors. Angew Chem Int Ed 57(47):15486–15490

    Article  CAS  Google Scholar 

  • Liu J, Lu X, Wu T, Wu X, Han L, Ding B (2021a) Branched antisense and siRNA co-assembled nanoplatform for combined gene silencing and tumor therapy. Angew Chem Int Ed 133(4):1881–1888

    Article  Google Scholar 

  • Liu L, Han L, Wu Q, Sun Y, Li K, Liu Y, Liu H, Luo E (2021b) Multifunctional DNA dendrimer annostructures for biomedical applications. J Mater Chem B 9(25):4991–5007

    Article  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–124

    Article  CAS  Google Scholar 

  • Mohsen MG, Kool ET (2016) The discovery of rolling circle amplification and rolling circle transcription. Acc Chem Res 49(11):2540–2550

    Article  CAS  Google Scholar 

  • Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X (2017) DNA trojan horses: self-assembled floxuridine-containing DNA polyhedra for cancer therapy. Angew Chem Int Ed 56(41):12528–12532

    Article  CAS  Google Scholar 

  • Muhamed N, Plengsuriyakarn T, Na-Bangchang K (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 13:3921–3935

    Article  Google Scholar 

  • Muzykantov V, Muro S (2011) Targeting delivery of drugs in the vascular system. Int J Transp Phenom 12(1–2):41–49

    CAS  Google Scholar 

  • Paterl PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21(12):2250–2256

    Article  Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, Appel M, d'Angelo J, Couvreur P (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60(1):121–128

    Article  CAS  Google Scholar 

  • Perrault SD, Shih WM (2014) Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8(5):5132–5140

    Article  CAS  Google Scholar 

  • Ponnuswamy N, Bastings MMC, Nathwani B, Ryu JH, Chou LYT, Vinther M, Li WA, Anastassacos FM, Mooney DJ, Shih WM (2017) Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat Commun 8:15654

    Article  CAS  Google Scholar 

  • Rahman MA, Wang P, Zhao Z, Wang D, Nannapaneni S, Zhang C, Chen Z, Griffith CC, Hurwitz SJ, Chen ZG, Ke Y, Shin DM (2017) Systemic delivery of Bcl2-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew Chem Int Ed 56(50):16023–16027

    Article  CAS  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to creat nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  • Samad A, Gaikwad RV, Mulla F, Patil RR, Jindal AB, Devarajan PV (2010) Particle shape: a new design parameter for passive targeting in splenotropic drug delivery. J Pharm Sci 99(6):2576–2581

    Article  Google Scholar 

  • Seeman NC (1998) DNA nanotechnology: novel DNA constructions. Annu Rev Biophys Biomol Struct 27:225–248

    Article  CAS  Google Scholar 

  • Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9(1):308–311

    Article  CAS  Google Scholar 

  • Shu D, Shu Y, Haque F, Abdelmawla S, Guo P (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6(10):658–667

    Article  CAS  Google Scholar 

  • Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, Lynbchenko Y, Guo P (2013) Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 19:767–777

    Article  CAS  Google Scholar 

  • Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorin L, Rothschild J, MacMillan P, Zhang Y, Rajesh NU, Hoang T, Wu JLY, Wilhelm S, Zilman A, Gadde S, Sulaiman A, Quyang B, Lin Z, Wang L, Egeblad M, Chan WCW (2020) The entry of nanoparticles into solid tumours. Nat Mater 19(5):566–575

    Article  CAS  Google Scholar 

  • Sinegra AJ, Evangelopoulos M, Park J, Huang Z, Mirkin CA (2021) Lipid nanoparticle spherical nucleic acid for intracellular DNA and RNA delivery. Nano Lett 21(15):6584–6591

    Article  CAS  Google Scholar 

  • Song L, Wang Z, Liu J, Wang T, Jiang Q, Ding B (2020) Tumor-targeted DNA bipyramid for in vivo dual-modality imaing. ACS Appl Bio Mater 3(5):2854–2860

    Article  CAS  Google Scholar 

  • Stephanopoulos N (2020) Hybrid nanostructures from the self-assembly of proteins adn DNA. Chem 6(2):364–405

    Article  CAS  Google Scholar 

  • Sun W, Lu Y, Gu Z (2015) Rolling circle replication for engineering drug delivery carriers. Ther Deliv 6(7):765–768

    Article  CAS  Google Scholar 

  • Tam DY, Ho JWT, Chan MS, Lau CH, Chang TJH, Leung HM, Liu LS, Wang F, Chan LLH, Tin C, Lo PK (2020) Penetrating the blood-brain barrier by self-assembled 3D DNA nanocages as drug delivery vehicles for brain cancer therapy. ACS Appl Mater Interfaces 12(6):28928–28940

    CAS  Google Scholar 

  • Taylor AI, Beuron F, Peak-Chew S-Y, Morris EP, Herdewijn PH, Holliger P (2016) Chembiochem 17(12):1107–1110

    Article  CAS  Google Scholar 

  • Thai HBD, Kim K-R, Hong KT, Voitsitskyi T, Lee J-S, Mao C, Ahn D-R (2020) Kidney-targeted cytosolic delivery of siRNA using a small-sized mirror DNA tetrahedron for enhanced potency. ACS Cent Sci 6(12):2250–2258

    Article  CAS  Google Scholar 

  • Tian T, Li J, Xie C, Sun Y, Lei H, Liu X, Xia J, Shi J, Wang L, Lu W, Fan C (2018) Targeted imaging of brain tumors with a framework nucleic acid probe. ACS Appl Mater Interfaces 10(4):3414–3420

    Article  CAS  Google Scholar 

  • Tran BT, Kim J, Ahn D-R (2020) Systemic delivery of aptamer–drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles. Nanoscale 12(45):22945–22951

    Article  CAS  Google Scholar 

  • Ulbrich K, Hola K, Subr V, Bakndritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release, control, and clinical studies. Chem Rev 116(9):5338–5431

    Article  CAS  Google Scholar 

  • Urban P, Liptrott NJ, Bremer S (2019) Overview of the blood compatibility of nanomedicines: a trend analysis of in vitro and in vivo studies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1546

    Article  Google Scholar 

  • Wang Y, Cheng J, Zhao D, Liu Y, Luo T, Zhong Y-F, Mo F, Kong X-Y, Song J (2020) Designed DNA nanostructure grafted with erlotinib for non-small-cell lung aner therapy. Nanoscale 12(47):23953–23958

    Article  CAS  Google Scholar 

  • Wang Z, Song L, Liu Q, Tian R, Shang Y, Liu F, Liu S, Zhao S, Han Z, Sun J, Jiang Q, Ding B (2021) Angew Chem Int Ed 60(5):2594–2598

    Article  CAS  Google Scholar 

  • Wisse E, Jacobs F, Topal B, Frederik P, Geest BD (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15:1193–1199

    Article  CAS  Google Scholar 

  • Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, Rvd M (2020) Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 159:344–363

    Article  CAS  Google Scholar 

  • Yao C, Qi H, Jia X, Xu Y, Tong Z, Gu Z, Yang D (2022) A DNA nanocomplex containing cascade DNAzymes and promotor-like Zn-Mn-ferrite for combined gene/chemo-dynamic therapy. Angew Chem Int Ed 61(6):e202113619

    Article  CAS  Google Scholar 

  • Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. J Am Chem Soc 8(7):6633–6643. (ACS NANO?)

    CAS  Google Scholar 

  • Zhang L, Abdullah R, Hu X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Sun Y, Zhang X, Tan W (2019) Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base. J Am Chem Soc 141(10):4282–4290

    Article  CAS  Google Scholar 

  • Zhang C, Han M, Zhang F, Yang X, Du J, Zhang H, Li W, Chen S (2020) Enhancing antitumor efficacy of nucleoside analog 5-fluorodeoxyuridine on HER2-overexpressing breast cancer by affibody-engineered DNA nanoparticle. Int J Nanomedicine 15:885–900

    Article  CAS  Google Scholar 

  • Zhu G, Zheng J, Song E, Tan W (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci 110(20):7998–8003

    Article  CAS  Google Scholar 

Further Readings

  • Mercuri E, Pera MC, Scoto M, Finkel R, Muntoni F (2020) Spinal muscular atrophy – insights and challenges in the treatment era. Nat Rev. Neurol 16(12):706–715

    Article  CAS  Google Scholar 

  • MacIntyre NR (2001) Intratracheal catheters as drug delivery systems. Respir Care 46(2):193–197

    CAS  Google Scholar 

  • Zhao Z, Ukidve A, Kim J, Mitagotri S (2020) Targeting strategies for tissue-specific drug delivery. Cell 181(1):151–167

    Article  CAS  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  Google Scholar 

  • Aldaye FA, Sleiman HF (2007) Modular access to structurally switchable 3D discrete DNA assemblies. J Am Chem Soc 129(44):13376–13377

    Article  CAS  Google Scholar 

  • Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11:316–322

    Article  CAS  Google Scholar 

  • Hu R, Zhang X, Zhao Z, Zhu G, Chen T, Fu T, Tan W (2014) DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem Intl Ed 53(126):5821–5826

    Article  CAS  Google Scholar 

  • Song Y, Song W, Lan X, Cai W, Jiang D (2021) Spherical nucleic acids: organized nucleotide aggregates as versatile nanomedicine. Aggregate 3:e120

    Google Scholar 

  • Zhang J, Guo Y, Ding F, Pan G, Zhu X, Zhang C (2019) A Camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angew Chem 131(39):13932–13936

    Article  Google Scholar 

  • Lv Z, Zhu Y, Li F (2021) DNA functional nanomaterials for controlled delivery of nucleic acid-based drugs. Front Bioeng Biotechnol 9:720291

    Article  Google Scholar 

  • Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  Google Scholar 

  • He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201

    Article  CAS  Google Scholar 

  • Campbell JM, Bacon TA, Wickstrom E (1990) Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 20(3):259–267

    Article  CAS  Google Scholar 

  • Piao X, Wang H, Binzel DW, Guo P (2018) Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2′-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 24:67–76

    Article  CAS  Google Scholar 

  • Fakhoury JJ, McLaughlin CK, Edwardson TW, Conway JW, Sleiman HF (2014) Development and characterization of gene silencing DNA cages. Biomacromolecules 15(1):276–282

    Article  CAS  Google Scholar 

  • Goodman RP, Berry RM (2004) Tuberfield AJ (2004) the single-step synthesis of a DNA tetrahedron. Chem Commun 12:1372–1373

    Article  Google Scholar 

  • Roy I, Vij N (2010) Nano-delivery in airway diseases: challenges and therapeutic applications. Nanomedicine 6(2):237–244

    Article  CAS  Google Scholar 

  • Lam JKW, Liang W, Chan HK (2012) Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev 64(1):1–15

    Article  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77(5):1017–1023

    Article  CAS  Google Scholar 

  • Han D, Park Y, Kim H, Lee JB (2014) Self-assembly of freestanding RNA membranes. Nat Commun 5:4367

    Article  CAS  Google Scholar 

  • Trefts E, Gannon M, Wasseman DH (2017) The liver. Curr Biol 27(21):R1147–R1151

    Article  CAS  Google Scholar 

  • Huang Y (2017) Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids 6:116–132

    Article  CAS  Google Scholar 

  • Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1(3):223–236

    Article  Google Scholar 

  • Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596

    Article  CAS  Google Scholar 

  • Jindal AB (2016) Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential. Drug Deliv Transl Res 6(5):473–485

    Article  CAS  Google Scholar 

  • Chellat F, Merhi Y, Moreau A, Yahia L (2005) Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 26(35):7260–7275

    Article  CAS  Google Scholar 

  • Kim K-R, Kim D-R, Lee T, Yhee JY, Kim B-S, Kwon IC, Ahn D-R (2013) Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun 49:2010–2012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Ro Ahn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, KR., Kim, J., Ahn, DR. (2022). Tissue-Specific Drug Delivery Platforms Based on DNA Nanoparticles. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics