Skip to main content

Advertisement

Log in

Tumor-Targeted Gene Delivery Using Poly(Ethylene Glycol)-Modified Gelatin Nanoparticles: In Vitro and in Vivo Studies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To develop safe and effective systemically administered nonviral gene therapy vectors for solid tumors, DNA-containing poly(ethylene glycol)-modified (PEGylated) gelatin nanoparticles were fabricated and evaluated in vitro and in vivo.

Methods

Reporter plasmid DNA encoding for β-galactosidase (pCMV-β) was encapsulated in gelatin and PEGylated gelatin nanoparticles using a water-ethanol solvent displacement method under controlled pH and temperature. Lewis lung carcinoma (LLC) cells in culture were transfected with the pCMV-β in the control and nanoparticle formulations. Periodically, the expression of β-galactosidase in the cells was measured quantitatively using an enzymatic assay for the conversion of o-nitrophenyl-β-d-galactopyranoside (ONPG) to o-nitrophenol (ONP). Qualitative expression of β-galactosidase in LLC cells was observed by staining with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal). Additionally, the plasmid DNA-encapsulated gelatin and PEGylated gelatin nanoparticles were administered intravenously (i.v.) and intratumorally (i.t.) to LLC-bearing female C57BL/6J mice. At various time points postadministration, the animals were sacrificed and transgene expression in the tumor and liver was determined quantitatively by the ONPG to ONP enzymatic conversion assay and qualitatively by X-gal staining.

Results

Almost 100% of the pCMV-β was encapsulated in gelatin and PEGylated gelatin nanoparticles (mean diameter 200 nm) at 0.5% (w/w) concentration. PEGylated gelatin nanoparticles efficiently transfected the LLC cells and the β-galactosidase expression, as measured by the ONPG to ONP enzymatic conversion assay at 420 nm absorbance, increased starting from 12 h until 96 h post-transfection. The efficient expression of LLC cells was also evident by the X-gal staining method that shows blue color formation. The in vivo studies showed significant expression of β-galactosidase in the tumor following administration of DNA-containing PEGylated gelatin nanoparticles to LLC-bearing mice by both i.v. and i.t. routes. Following i.v. administration of pCMV-β in PEGylated gelatin nanoparticles, for instance, the absorbance at 420 nm per gram of tumor increased from 0.60 after 12 h to 0.85 after 96 h of transfection. After i.t. administration, the absorbance values increased from 0.90 after 12 h to almost 1.4 after 96 h.

Conclusions

The in vitro and in vivo results of this study clearly show that a long-circulating, biocompatible and biodegradable, DNA-encapsulating nanoparticulate system would be highly desirable for systemic delivery of genetic constructs to solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. C. Eschenbach Particlevon (2004) ArticleTitleA vision for the national cancer program in the United States Nat. Rev. Cancer 4 820–828 Occurrence Handle15510163

    PubMed  Google Scholar 

  2. J. Baselga (1999) ArticleTitleNew horizons: gene therapy for cancer Anti-Cancer Drugs 10 S39–S42 Occurrence Handle1:CAS:528:DC%2BD3cXhslWrtQ%3D%3D Occurrence Handle10630368

    CAS  PubMed  Google Scholar 

  3. B. E. Huber (1994) ArticleTitleGene therapy strategies for treating neoplastic diseases Ann. N.Y. Acad. Sci. 716 6–11 Occurrence Handle1:STN:280:ByuB1MngtV0%3D Occurrence Handle8024210

    CAS  PubMed  Google Scholar 

  4. J. A. Roth R. J. Christiano (1997) ArticleTitleGene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 89 21–39 Occurrence Handle1:STN:280:ByiC3szgsVE%3D Occurrence Handle8978404

    CAS  PubMed  Google Scholar 

  5. R. J. Mrsny (2004) Tissue- and cell-specific targeting for the delivery of genetic information M. M. Amiji (Eds) Polymeric Gene Delivery: Principles and Applications CRC Press, LLC Boca Raton, FL 5–27

    Google Scholar 

  6. E. Marshall (2000) ArticleTitleGene therapy on trial Science 288 951–956 Occurrence Handle1:CAS:528:DC%2BD3cXjtlygsrw%3D Occurrence Handle10841710

    CAS  PubMed  Google Scholar 

  7. E. Check (2002) ArticleTitleGene therapy: a tragic setback Nature 420 116–118 Occurrence Handle1:CAS:528:DC%2BD38Xos1Ggurk%3D Occurrence Handle12432357

    CAS  PubMed  Google Scholar 

  8. F. D. Ledley (1994) ArticleTitleNon-viral gene therapy Curr. Opin. Biotechnol. 5 626–636 Occurrence Handle1:CAS:528:DyaK2MXivFGqurw%3D Occurrence Handle7765746

    CAS  PubMed  Google Scholar 

  9. M. Nishikawa M. Hashida (2002) ArticleTitleNonviral approaches satisfying various requirements for effective in vivo gene therapy Biol. Pharm. Bull. 25 275–283 Occurrence Handle1:CAS:528:DC%2BD38XkslWltrw%3D Occurrence Handle11913519

    CAS  PubMed  Google Scholar 

  10. Y. Kaneda (2004) Biological barriers to gene transfer M. M. Amiji (Eds) Polymeric Gene Delivery: Principles and Applications CRC Press, LLC Boca Raton, FL 29–41

    Google Scholar 

  11. A. G. Schatzlein (2003) ArticleTitleTargeting of synthetic gene delivery systems J. Biomed. Biotechnol. 2 149–158

    Google Scholar 

  12. D. Luo W. M. Saltzman (2000) ArticleTitleSynthetic DNA delivery systems Nat. Biotechnol. 18 33–37 Occurrence Handle1:CAS:528:DC%2BD3cXjs12jsQ%3D%3D Occurrence Handle10625387

    CAS  PubMed  Google Scholar 

  13. S. Dokka Y. Rojanasakul (2004) Cellular uptake and trafficking M. M. Amiji (Eds) Polymeric Gene Delivery: Principles and Applications CRC Press, LLC Boca Raton, FL 43–61

    Google Scholar 

  14. A. G. Schatzlein (2001) ArticleTitleNon-viral vectors in cancer gene therapy: principles and progress Anti-Cancer Drugs 12 275–304 Occurrence Handle1:CAS:528:DC%2BD3MXktVSksrs%3D Occurrence Handle11335785

    CAS  PubMed  Google Scholar 

  15. A. T. Jones M. Gumbleton R. Duncan (2003) ArticleTitleUnderstanding endocytic pathways and intracellular trafficking: a prerequisite for effective design of advanced drug delivery systems Adv. Drug Deliv. Rev. 55 1353–1357 Occurrence Handle1:CAS:528:DC%2BD3sXosVKqtro%3D Occurrence Handle14597135

    CAS  PubMed  Google Scholar 

  16. J. Panyam V. Labhasetwar (2003) ArticleTitleBiodegradable nanoparticles for drug and gene delivery to cells and tissue Adv. Drug Deliv. Rev. 55 329–352 Occurrence Handle1:CAS:528:DC%2BD3sXhs1Cgurw%3D

    CAS  Google Scholar 

  17. R. Gref Y. Minamitake M. T. Peracchia V. S. Trubetskoy V. P. Torchilin R. Langer (1994) ArticleTitleBiodegradable long-circulating polymeric nanospheres Science 263 1600–1603 Occurrence Handle1:CAS:528:DyaK2cXit1KktLc%3D Occurrence Handle8128245

    CAS  PubMed  Google Scholar 

  18. S. M. Moghimi A. C. Hunter J. C. Murray (2001) ArticleTitleLong-circulating and target-specific nanoparticles: theory to practice Pharmacol. Rev. 53 283–318 Occurrence Handle1:CAS:528:DC%2BD3MXkt1Gnurc%3D Occurrence Handle11356986

    CAS  PubMed  Google Scholar 

  19. H. Otsuka Y. Nagasaki K. Kataoka (2003) ArticleTitlePEGylated nanoparticles for biological and pharmaceutical applications Adv. Drug Deliv. Rev. 55 403–419 Occurrence Handle1:CAS:528:DC%2BD3sXhs1Cgurg%3D Occurrence Handle12628324

    CAS  PubMed  Google Scholar 

  20. T. Nomura N. Koreeda F. Yamashita Y. Takakura M. Hashida (1998) ArticleTitleEffect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors Pharm. Res. 15 128–132 Occurrence Handle1:CAS:528:DyaK1cXosFSjug%3D%3D Occurrence Handle9487559

    CAS  PubMed  Google Scholar 

  21. H. Maeda J. Wu T. Sawa Y. Matsumura K. Hori (2000) ArticleTitleTumor vascular permeability and the EPR effect in macromolecular therapeutics: a review J. Control. Release 65 271–284 Occurrence Handle1:CAS:528:DC%2BD3cXhtl2qsLo%3D Occurrence Handle10699287

    CAS  PubMed  Google Scholar 

  22. L. W. Seymour (1992) ArticleTitlePassive tumor targeting of soluble macromolecules and drug conjugates Crit. Rev. Ther. Drug Carr. Syst. 9 135–187 Occurrence Handle1:CAS:528:DyaK38XkvFOitr4%3D

    CAS  Google Scholar 

  23. R. Duncan Y.-N. Sat (1998) ArticleTitleTumor targeting by enhanced permeability and retention (EPR) effect Ann. Oncol. 9 39–50

    Google Scholar 

  24. F. Yuan M. Dellian D. Fukumura M. Leunig D. A. Berk V. P. Torchilin R. K. Jain (1995) ArticleTitleVascular permeability in a human tumor xenograft: molecular size dependence and cutoff size Cancer Res. 55 3752–3756 Occurrence Handle1:CAS:528:DyaK2MXnvVelsLc%3D Occurrence Handle7641188

    CAS  PubMed  Google Scholar 

  25. W. L. Monsky D. Fukumura T. Gohongi M. Ancukiewcz H. A. Weich V. P. Torchilin R. K. Jain (1999) ArticleTitleAugmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor Cancer Res. 59 4129–4135 Occurrence Handle1:CAS:528:DyaK1MXlsVOlurc%3D Occurrence Handle10463618

    CAS  PubMed  Google Scholar 

  26. M. Dellian F. Yuan V. S. Trubetskoy V. P. Torchilin R. K. Jain (2000) ArticleTitleVascular permeability in a human tumor xenograft: molecular charge dependence Br. J. Cancer 82 1513–1518 Occurrence Handle1:CAS:528:DC%2BD3cXjsFaksr0%3D Occurrence Handle10789717

    CAS  PubMed  Google Scholar 

  27. G. Kaul M. Amiji (2004) Polymeric gene delivery systems D. L. Wise V. Hasirci K.-U. Lewandrowski M. J. Yaszemski D. W. Altobelli D. J. Trantolo (Eds) Tissue Engineering and Novel Delivery Systems Marcel Dekker, Inc. New York, NY 333–367

    Google Scholar 

  28. G. Kaul M. Amiji (2004) Protein nanospheres for gene delivery M. M. Amiji (Eds) Polymeric Gene Delivery: Principles and Applications CRC Press, LLC Boca Raton, FL 429–447

    Google Scholar 

  29. A. Veis (1964) The Macromolecular Chemistry of Gelatin Academic Press Inc. New York, NY

    Google Scholar 

  30. A. G. Ward A. Courts (1977) The Science and Technology of Gelatin Academic Press, Inc. New York, NY

    Google Scholar 

  31. G. Kaul M. Amiji (2002) ArticleTitleLong-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery Pharm. Res. 19 1062–1068

    Google Scholar 

  32. G. Kaul C. Lee-Parsons M. Amiji (2003) ArticleTitlePoly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery Pharm. Eng. 23 108–114

    Google Scholar 

  33. G. Kaul M. Amiji (2005) ArticleTitleCellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles J. Pharm. Sci. 94 184–198 Occurrence Handle1:CAS:528:DC%2BD2MXjslyruw%3D%3D Occurrence Handle15761942

    CAS  PubMed  Google Scholar 

  34. G. Kaul M. Amiji (2004) ArticleTitleBiodistribution and targeting potential of poly(ethylene glycol) modified gelatin nanoparticles in subcutaneous murine tumor model J. Drug Target. 12 585–591 Occurrence Handle1:CAS:528:DC%2BD2cXhtFCqurbP Occurrence Handle15621684

    CAS  PubMed  Google Scholar 

  35. D. A. Nielsen J. Chou A. J. MacKrell M. J. Casadaban D. F. Steiner (1983) ArticleTitleExpression of a preproinsulin-b-galactosidase gene fusion in mammalian cells Proc. Natl. Acad. Sci. USA 80 5198–5202 Occurrence Handle1:CAS:528:DyaL3sXlvVyrtr4%3D Occurrence Handle6310564

    CAS  PubMed  Google Scholar 

  36. R. Krishna M. S. Webb G. St. Onge L. D. Mayer (2001) ArticleTitleLiposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue disposition properties J. Pharmacol. Exp. Ther. 298 1206–1212 Occurrence Handle1:CAS:528:DC%2BD3MXmtFKmtb4%3D Occurrence Handle11504822

    CAS  PubMed  Google Scholar 

  37. S. Nsereko M. Amiji (2002) ArticleTitleLocalized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations Biomaterials 23 2723–2731 Occurrence Handle1:CAS:528:DC%2BD38XjsVSqsb0%3D Occurrence Handle12059022

    CAS  PubMed  Google Scholar 

  38. V. Weissig K. R. Whiteman V. P. Torchilin (1998) ArticleTitleAccumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice Pharm. Res. 15 1552–1556 Occurrence Handle1:CAS:528:DyaK1cXms1Ghurw%3D Occurrence Handle9794497

    CAS  PubMed  Google Scholar 

  39. D. Lechardeur G. L. Lukacs (2002) ArticleTitleIntracellular barriers to non-viral gene delivery Curr. Gene Ther. 2 183–194 Occurrence Handle1:CAS:528:DC%2BD38XjvFKgsbk%3D Occurrence Handle12109215

    CAS  PubMed  Google Scholar 

  40. L. Gerrace (1992) ArticleTitleMolecular trafficking across the nuclear pore complex Curr. Opin. Cell Biol. 4 637–645 Occurrence Handle1329868

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (RO1-CA095522) from the National Cancer Institute of the National Institutes of Health. Cell and tissue microscopy studies were performed with the assistance of Mr. William Fowle at the Electron Microscopy Center of Northeastern University. We deeply appreciate all the technical assistance provided by graduate students and postdoctoral associates in Professor Vladimir Torchilin’s laboratory at Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaul, G., Amiji, M. Tumor-Targeted Gene Delivery Using Poly(Ethylene Glycol)-Modified Gelatin Nanoparticles: In Vitro and in Vivo Studies. Pharm Res 22, 951–961 (2005). https://doi.org/10.1007/s11095-005-4590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-4590-3

Key words

Navigation