Skip to main content

Advertisement

Log in

Efficacy of siRNA Nanocapsules Targeted Against the EWS–Fli1 Oncogene in Ewing Sarcoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The EWS–Fli1 fusion gene encodes for a chimeric oncogenic transcription factor considered to be the cause of the Ewing sarcoma. The efficiency of small interfering RNAs (siRNAs) targeted toward the EWS–Fli1 transcript (at the junction point type 1) was studied, free or encapsulated into recently developed polyisobutylcyanoacrylate aqueous core nanocapsules. Because this mRNA sequence is only present in cancer cells, it therefore constituted a relevant target. Studies of the intracellular penetration by confocal microscopy in NIH/3T3 EWS–Fli1 cells showed that nanocapsules improved the intracellular penetration of siRNA with mainly a cytoplasmic localization. These biodegradable siRNA-loaded nanocapsules were then tested in vivo on a mice xenografted EWS–Fli1-expressing tumor; they were found to trigger a dose-dependant inhibition of tumor growth after intratumoral injection. A specific inhibition of EWS–Fli1 was observed, too. These findings now open new prospects for the treatment of experimental cancers with junction oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. H. Rabbitts (1994) ArticleTitleChromosomal translocations in human cancer Nature (Lond.) 372 143–149 Occurrence Handle1:CAS:528:DyaK2cXmvFyjt7c%3D Occurrence Handle10.1038/372143a0

    Article  CAS  Google Scholar 

  2. C. Sreekantaiah M. Ladanyi E. Rodriguez R. S. K. Chaganti (1994) ArticleTitleChromosomal aberration in soft tissue tumours Am. J. Pathol. 144 1121–1134 Occurrence Handle8203453 Occurrence Handle1:STN:280:DyaK2c3mt1Kqsg%3D%3D

    PubMed  CAS  Google Scholar 

  3. O. Delattre J. Zucman B. Plougastel C. Desmaze T. Melot M. Peter H. Kovar I. Joubert P. D. Jong G. Rouleau A. Aurias G. Thomas (1992) ArticleTitleGene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumors Nature (Lond.) 359 162–165 Occurrence Handle1:CAS:528:DyaK3sXkvFantL0%3D Occurrence Handle10.1038/359162a0

    Article  CAS  Google Scholar 

  4. T. Ohno V. N. Rao E. S. Reddy (1993) ArticleTitleEWS/Fli1 chimeric protein is a transcriptional activator Cancer Res. 53 5859–5863 Occurrence Handle7503813 Occurrence Handle1:CAS:528:DyaK2cXhtVemsr8%3D

    PubMed  CAS  Google Scholar 

  5. R. A. Bailly R. Bosselut J. Zucman F. Cornier O. Delattre M. Roussel G. Thomas J. Ghysdael (1994) ArticleTitleDNA-binding and transcriptional activation of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma Mol. Cell. Biol. 14 3230–3241 Occurrence Handle8164678 Occurrence Handle1:CAS:528:DyaK2cXktVantb0%3D

    PubMed  CAS  Google Scholar 

  6. W. A. May S. L. Lessnick B. S. Braun M. Klemsz B. C. Lewis L. B. Lunsford R. Hromas C. T. Denny (1993) ArticleTitleThe Ewing sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1 Mol. Cell. Biol. 13 7393–7398 Occurrence Handle8246959 Occurrence Handle1:CAS:528:DyaK2cXntVOmsw%3D%3D

    PubMed  CAS  Google Scholar 

  7. X. Mao S. Miesfeldt H. Yang J. M. Leiden C. B. Thompson (1994) ArticleTitleThe FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities J. Biol. Chem. 269 18216–18222 Occurrence Handle7517940 Occurrence Handle1:CAS:528:DyaK2cXlvFOntbk%3D

    PubMed  CAS  Google Scholar 

  8. W. A. May M. L. Gishizky S. L. Lessnick L. B. Lunsford B. C. Lewis O. Delattre J. Zucman G. Thomas C. T. Denny (1993) ArticleTitleEwing sarcoma 11;22 translocation produces a chimeric transcription factor that require the DNA-binding domain encoded by FLI1 for transformation Proc. Natl. Acad. Sci. USA 90 5752–5756 Occurrence Handle8516324 Occurrence Handle1:CAS:528:DyaK3sXltFCmsbw%3D

    PubMed  CAS  Google Scholar 

  9. K. Tanaka T. Iwakuma K. Harimaya H. Sato Y. Iwamoto (1997) ArticleTitleEWS–Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells J. Clin. Invest. 99 239–247 Occurrence Handle9005992 Occurrence Handle1:CAS:528:DyaK2sXntVOjug%3D%3D Occurrence Handle10.1172/JCI119152

    Article  PubMed  CAS  Google Scholar 

  10. K. Hede (2005) ArticleTitleRNA-based nanoparticle treatment shows promise in Ewing's sarcoma model J. Natl. Cancer Inst. 97 627 Occurrence Handle15870430 Occurrence Handle10.1093/jnci/97.9.627

    Article  PubMed  Google Scholar 

  11. G. J. Hannon (2002) ArticleTitleRNA interference Nature 418 244–251 Occurrence Handle12110901 Occurrence Handle1:CAS:528:DC%2BD38XltFGmu7Y%3D Occurrence Handle10.1038/418244a

    Article  PubMed  CAS  Google Scholar 

  12. A. Fire S. Xu M. K. Montgomery S. A. Kostas S. E. Driver C. C. Mello (1998) ArticleTitlePotent and specific genetic interference by double-stand RNA in Caenorhabditis elegans Nature 391 806–811 Occurrence Handle9486653 Occurrence Handle1:CAS:528:DyaK1cXhtlCju74%3D Occurrence Handle10.1038/35888

    Article  PubMed  CAS  Google Scholar 

  13. M. Pal-Bhadra U. Bhadra J. A. Birchler (2002) ArticleTitleRNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila Mol. Cell 9 315–327 Occurrence Handle11864605 Occurrence Handle1:CAS:528:DC%2BD38XhvFKhu7k%3D Occurrence Handle10.1016/S1097-2765(02)00440-9

    Article  PubMed  CAS  Google Scholar 

  14. S. M. Elbashir J. Martinez A. Patkaniowska W. Lendeckel T. Tuschl (2001) ArticleTitleFunctional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate EMBO J. 20 6877–6888 Occurrence Handle11726523 Occurrence Handle1:CAS:528:DC%2BD3MXptVaqurw%3D Occurrence Handle10.1093/emboj/20.23.6877

    Article  PubMed  CAS  Google Scholar 

  15. E. Bernstei A. A. Caudy S. M. Hammond G. J. Hannon (2001) ArticleTitleRole for a bidentate ribonuclease in the initiation step of RNA interference Nature 409 363–366 Occurrence Handle10.1038/35053110 Occurrence Handle1:CAS:528:DC%2BD3MXms12ksA%3D%3D

    Article  CAS  Google Scholar 

  16. T. R. Brummelkamp R. Bernards R. Agami (2002) ArticleTitleA system for stable expression of short interfering RNAs in mammalian cells Science 296 550–553 Occurrence Handle11910072 Occurrence Handle1:CAS:528:DC%2BD38XjtFCjtrk%3D Occurrence Handle10.1126/science.1068999

    Article  PubMed  CAS  Google Scholar 

  17. T. R. Brummelkamp R. Bernards R. Agami (2002) ArticleTitleA system for stable expression of short interfering RNAs in mammalian cells Science 296 550–553 Occurrence Handle11910072 Occurrence Handle1:CAS:528:DC%2BD38XjtFCjtrk%3D Occurrence Handle10.1126/science.1068999

    Article  PubMed  CAS  Google Scholar 

  18. W. M. Bertling M. Gareis V. Paspaleeva A. Zimmer J. Kreuter E. Nurnberg P. Harrer (1991) ArticleTitleUse of liposomes, viral capsids, and nanoparticles as DNA carriers Biotechnol. Appl. Biochem. 13 390–405 Occurrence Handle1883530 Occurrence Handle1:CAS:528:DyaK3MXltVOksbs%3D

    PubMed  CAS  Google Scholar 

  19. Z. Hassani G. F. Lemkine P. Erbacher K. Palmier G. Alfama C. Giovannageli et al. (2004) ArticleTitleLipid-mediated siRNA delivery dowregulates exogenous gene expression in the mouse brain at picomolar levels J. Gene Med. 7 198–207 Occurrence Handle10.1002/jgm.659 Occurrence Handle1:CAS:528:DC%2BD2MXis1Kisrg%3D

    Article  CAS  Google Scholar 

  20. Y. Zhang Y. F. Zhang J. Bryant A. Charles R. J. Boado W. M. Pardridge (2004) ArticleTitleIntravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer Clin. Cancer Res. 10 3667–3677 Occurrence Handle15173073 Occurrence Handle1:CAS:528:DC%2BD2cXksVKnsbg%3D Occurrence Handle10.1158/1078-0432.CCR-03-0740

    Article  PubMed  CAS  Google Scholar 

  21. K. M. Ray P. A. Whittaker (2005) ArticleTitleRNA interference: from gene silencing to gene-specific therapeutics Pharmacol. Ther. 107 222–239 Occurrence Handle10.1016/j.pharmthera.2005.03.004 Occurrence Handle1:CAS:528:DC%2BD2MXlvVWgtLc%3D

    Article  CAS  Google Scholar 

  22. G. Lambert E. Fattal H. Pinto-Alphandary A. Gulik P. Couvreur (2000) ArticleTitlePolyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides Pharm. Res. 17 707–714 Occurrence Handle10955845 Occurrence Handle1:CAS:528:DC%2BD3cXlvVCgtrs%3D Occurrence Handle10.1023/A:1007582332491

    Article  PubMed  CAS  Google Scholar 

  23. T. Tuschl (2002) ArticleTitleExpanding small RNA interference Nat. Biotechnol. 20 446–448 Occurrence Handle11981553 Occurrence Handle1:CAS:528:DC%2BD38Xjt1Knsb0%3D Occurrence Handle10.1038/nbt0502-446

    Article  PubMed  CAS  Google Scholar 

  24. I. Aynie C. Vauthier M. Foulquier C. Malvy E. Fattal P. Couvreur (1996) ArticleTitleDevelopment of a quantitative polyacrylamide gel electrophoresis analysis using a multichannel radioactivity counter for the evaluation of oligonucleotide-bound drug carrier Anal. Biochem. 240 202–209 Occurrence Handle8811909 Occurrence Handle1:CAS:528:DyaK28Xls1ektrY%3D Occurrence Handle10.1006/abio.1996.0350

    Article  PubMed  CAS  Google Scholar 

  25. G. Lambert J. R. Bertrand E. Fattal S. Subra H. Pinto-Alphandary C. Malvy C. Auclair P. Couvreur (2000) ArticleTitleEWS Fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice Biochem. Biophys. Res. Commun. 279 401–406 Occurrence Handle11118299 Occurrence Handle1:CAS:528:DC%2BD3cXovVCntL8%3D Occurrence Handle10.1006/bbrc.2000.3963

    Article  PubMed  CAS  Google Scholar 

  26. S. Watnasirichaikul N. M. Davies T. Rades I. G. Tucker (2000) ArticleTitlePreparation of biodegradable insulin nanocapsules from biocompatible microemulsions Pharm. Res. 17 684–689 Occurrence Handle10955841 Occurrence Handle1:CAS:528:DC%2BD3cXlvVCgtr8%3D Occurrence Handle10.1023/A:1007574030674

    Article  PubMed  CAS  Google Scholar 

  27. P. Workman et al. (1998) ArticleTitleUnited Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of animals in Experimental Neoplasia (Second Edition) Br. J. Cancer 77 1–10

    Google Scholar 

  28. T. Maniatis E. F. Fritsch J. Sambrook (1982) Molecular Cloning. A Laboratory Manual Cold Spring Harbor Laboratory Cold Spring Harbor, NY

    Google Scholar 

  29. M. R. Schiffelers A. Ansari J. Xu Q. Zhou Q. Tang G. Storm G. Molema P. Y. Lu P. V. Scaria M. C. Woodle (2004) ArticleTitleCancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle Nucleic Acids Res. 32 e149 Occurrence Handle15520458 Occurrence Handle10.1093/nar/gnh140

    Article  PubMed  Google Scholar 

  30. W. Zhang H. Yang X. Kong S. Mohapatra H. Juan-Vergara ParticleSan G. Hellermann S. Behera R. Singam R. F. Lockey S. S. Mohapatra (2005) ArticleTitleInhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene Nat. Med. 11 56–62 Occurrence Handle15619625 Occurrence Handle1:CAS:528:DC%2BD2MXptVSl Occurrence Handle10.1038/nm1174

    Article  PubMed  CAS  Google Scholar 

  31. L. Spahn C. Siligan R. Bachmaier J. A. Schmid D. N. Aryee H. Kovar (2003) ArticleTitleHomotypic and heterotypic interactions of EWS, Fli1 and their oncogenic fusion protein Oncogene 9 IssueID22 6819–6829 Occurrence Handle10.1038/sj.onc.1206810 Occurrence Handle1:CAS:528:DC%2BD3sXnvFSgsbY%3D

    Article  CAS  Google Scholar 

  32. Y. L. Chiu A. Ali C. Y. Chu H. Cao T. M. Rana (2004) ArticleTitleVisualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells Chem. Biol. 11 1165–1175 Occurrence Handle15324818 Occurrence Handle1:CAS:528:DC%2BD2cXntVaru7g%3D Occurrence Handle10.1016/j.chembiol.2004.06.006

    Article  PubMed  CAS  Google Scholar 

  33. Q. Leng A. J. Mixson (2005) ArticleTitleSmall interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo Cancer Gene Ther. 12 IssueID8 682–690 Occurrence Handle15803144 Occurrence Handle1:CAS:528:DC%2BD2MXmt1WmsL8%3D Occurrence Handle10.1038/sj.cgt.7700831

    Article  PubMed  CAS  Google Scholar 

  34. H. Guan Z. Zhou H. Wang W. L. Jia W. L. Kleinerman (2005) ArticleTitleA small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model Clin. Cancer Res. 11 2662–2669 Occurrence Handle15814647 Occurrence Handle1:CAS:528:DC%2BD2MXivFKis7Y%3D Occurrence Handle10.1158/1078-0432.CCR-04-1206

    Article  PubMed  CAS  Google Scholar 

  35. A. Maksimenko V. Polard M. Villemeur H. Elhamess P. Couvreur J. R. Bertrand M. Aboubakar M. Gottikh C. Malvy (2005) ArticleTitleIn vivo potentialities of EWS-FLI-1 targeted antisense oligonucleotides–nanospheres complexes Ann. N.Y. Acad. Sci. 1058 52–62 Occurrence Handle16394125 Occurrence Handle1:CAS:528:DC%2BD28XislCrsbw%3D Occurrence Handle10.1196/annals.1359.010

    Article  PubMed  CAS  Google Scholar 

  36. H. Farhood N. Serbina L. Huang (1995) ArticleTitleThe role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer Biochim. Biophys. Acta 1235 289–295 Occurrence Handle7756337

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Jalil Abdelali and Mrs. Monique Stanciu (G. Roussy Institute) for excellent technical assistance and Mrs. Ghislaine Frébourg (UMR CNRS 7138) for electronic microscopy experiments. N. Toub is supported by a fellowship from La Ligue Nationale Contre le Cancer. This work was supported by the Association de Recherche sur le Cancer (grant no. 4310), Fondation de l'Avenir, and the European grant PROTHETS (contract no. LSHC-CT-2004 5033036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Malvy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toub, N., Bertrand, JR., Tamaddon, A. et al. Efficacy of siRNA Nanocapsules Targeted Against the EWS–Fli1 Oncogene in Ewing Sarcoma. Pharm Res 23, 892–900 (2006). https://doi.org/10.1007/s11095-006-9901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9901-9

Key Words

Navigation