Skip to main content
Log in

Non-viral in vivo immune gene therapy of cancer: combined strategies for treatment of systemic disease

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Many patients with various types of cancers have already by the time of presentation, micrometastases in their tissues and are left after treatment in a minimal residual disease state [Am J Gastroenterol 95(12), 2000]. To prevent tumour recurrence these patients require a systemic based therapy, but current modalities are limited by toxicity or lack of efficacy. We have previously reported that immune reactivity to the primary tumour is an important regulator of micrometastases and determinant of prognosis. This suggests that recruitment of specific anti-tumour mechanisms within the primary tumour could be used advantageously for tumour control as either primary or neo-adjuvant treatments. Recently, we have focused on methods of stimulating immune eradication of solid tumours and minimal residual disease using gene therapy approaches. Gene therapy is now a realistic prospect and a number of delivery approaches have been explored, including the use of viral and non-viral vectors. Non-viral vectors have received significant attention since, in spite of their relative delivery inefficiency, they may be safer and have greater potential for delivery of larger genetic units. By in vivo electroporation of the primary tumour with plasmid expressing GM-CSF and B7-1, we aim to stimulate immune eradication of the treated tumour and associated metastases. In this symposium report, we describe an effective gene based approach for cancer immunotherapy by inducing cytokine and immune co-stimulatory molecule expression by the growing cells of the primary tumour using a plasmid electroporation gene delivery strategy. We discuss the potential for enhancement of this therapy by its application as a neoadjuvant to surgical excision and by its use in combination with suppressor T cell depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cell

EP:

Electroporation

GM-CSF:

Granulocyte macrophage-colony

LAK:

Lymphokine activated killer cell

SF:

Stimulating factor

i.v.:

Intravenous

MRD:

Minimal residual disease

s.c.:

Subcutaneous

TAA:

Tumour associated antigen

TIL:

Tumour infiltrating lymphocyte

Treg:

Regulatory T cell

References

  1. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16(9):867–870

    Article  PubMed  CAS  Google Scholar 

  2. Antony PA, Restifo NP (2005) CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother 28(2):120–128

    Article  PubMed  CAS  Google Scholar 

  3. Borrello I, Pardoll D (2002) GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev 13(2):185–193

    Article  PubMed  CAS  Google Scholar 

  4. Casares N, Arribillaga L, Sarobe P, Dotor J, Lopez-Diaz de Cerio A, Melero I, Prieto J, Borras-Cuesta F, Lasarte JJ (2003) CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol 171(11):5931–5939

    PubMed  CAS  Google Scholar 

  5. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71(7):1093–1102

    Article  PubMed  CAS  Google Scholar 

  6. Chen L, McGowan P, Ashe S, Johnston J, Li Y, Hellstrom I, Hellstrom KE (1994) Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 179(2):523–532

    Article  PubMed  CAS  Google Scholar 

  7. Chen L, McGowan P, Ashe S, Johnston JV, Hellstrom I, Hellstrom KE (1994) B7-1/CD80-transduced tumor cells elicit better systemic immunity than wild-type tumor cells admixed with Corynebacterium parvum. Cancer Res 54(20):5420–5423

    PubMed  CAS  Google Scholar 

  8. Cheuk AT, Chan L, Czepulkowski B, Berger SA, Yagita H, Okumura K, Farzaneh F, Mufti GJ, Guinn BA (2006) Development of a whole cell vaccine for acute myeloid leukaemia. Cancer Immunol Immunother 55(1):68–75

    Article  PubMed  Google Scholar 

  9. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    Article  PubMed  CAS  Google Scholar 

  10. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633

    Article  PubMed  CAS  Google Scholar 

  11. Dezfouli S, Hatzinisiriou I, Ralph SJ (2003) Enhancing CTL responses to melanoma cell vaccines in vivo: synergistic increases obtained using IFNgamma primed and IFNbeta treated B7-1+ B16-F10 melanoma cells. Immunol Cell Biol 81(6):459–471

    Article  PubMed  CAS  Google Scholar 

  12. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90(8):3539–3543

    Article  PubMed  CAS  Google Scholar 

  13. Emtage PC, Wan Y, Hitt M, Graham FL, Muller WJ, Zlotnik A, Gauldie J (1999) Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum Gene Ther 10(5):697–709

    Article  PubMed  CAS  Google Scholar 

  14. Hayball JD, Robinson BW, Lake RA (2004) CD4+ T cells cross-compete for MHC class II-restricted peptide antigen complexes on the surface of antigen presenting cells. Immunol Cell Biol 82(2):103–111

    Article  PubMed  CAS  Google Scholar 

  15. Heller L, Pottinger C, Jaroszeski MJ, Gilbert R, Heller R (2000) In vivo electroporation of plasmids encoding GM-CSF or interleukin-2 into existing B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res 10(6):577–583

    Article  PubMed  CAS  Google Scholar 

  16. Larkin J, Tangney M, Collins C, Casey G, O’Brien M G, Soden D, O’Sullivan GC (2006) Oral immune tolerance mediated by suppressor T cells may be responsible for the poorer prognosis of foregut cancers. Med Hypotheses 66(3):541–544

    Article  PubMed  CAS  Google Scholar 

  17. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    PubMed  CAS  Google Scholar 

  18. Linsley PS, Clark EA, Ledbetter JA (1990) T cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA 87(13):5031–5035

    Article  PubMed  CAS  Google Scholar 

  19. Meltzer A (1990) Dormancy and breast cancer. J Surg Oncol 43(3):181–188

    Article  PubMed  CAS  Google Scholar 

  20. Meunier MC, Delisle JS, Bergeron J, Rineau V, Baron C, Perreault C (2005) T cells targeted against a single minor histocompatibility antigen can cure solid tumors. Nat Med 11(11):1222–1229

    Article  PubMed  CAS  Google Scholar 

  21. Mitchell MS (2002) Cancer vaccines, a critical review—Part I. Curr Opin Investig Drugs 3(1):140–149

    PubMed  CAS  Google Scholar 

  22. Muller M, Gounari F, Prifti S, Hacker HJ, Schirrmacher V, Khazaie K (1998) EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res 58(23):5439–5446

    PubMed  CAS  Google Scholar 

  23. Murakami M, Sakamoto A, Bender J, Kappler J, Marrack P (2002) CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc Natl Acad Sci USA 99(13):8832–8837

    Article  PubMed  CAS  Google Scholar 

  24. Murphy J, O’Sullivan GC, Lee G, Madden M, Shanahan F, Collins JK, Talbot IC (2000) The inflammatory response within Dukes’ B colorectal cancers: implications for progression of micrometastases and patient survival. Am J Gastroenterol 95(12):3607–3614

    Article  PubMed  CAS  Google Scholar 

  25. Nasu Y, Bangma CH, Hull GW, Lee HM, Hu J, Wang J, McCurdy MA, Shimura S, Yang G, Timme TL, Thompson TC (1999) Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther 6(3):338–349

    Article  PubMed  CAS  Google Scholar 

  26. Nemunaitis J, Sterman D, Jablons D, Smith JW II, Fox B, Maples P, Hamilton S, Borellini F, Lin A, Morali S, Hege K (2004) Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 96(4):326–331

    Article  PubMed  CAS  Google Scholar 

  27. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1(7):841–845

    PubMed  CAS  Google Scholar 

  28. O’Connell J (1999) The Fas counterattack: cancer as a site of immune privilege. Immunol Today 20(1):46–52

    Article  PubMed  CAS  Google Scholar 

  29. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184(3):1075–1082

    Article  PubMed  CAS  Google Scholar 

  30. O’Sullivan GC, Collins JK, O’Brien F, Crowley B, Murphy K, Lee G, Shanahan F (1995) Micrometastases in bone marrow of patients undergoing “curative” surgery for gastrointestinal cancer. Gastroenterology 109(5):1535–1540

    Article  PubMed  CAS  Google Scholar 

  31. O’Sullivan GC, Corbett AR, Shanahan F, Collins JK (1996) Regional immunosuppression in esophageal squamous cancer: evidence from functional studies with matched lymph nodes. J Immunol 157(10):4717–4720

    PubMed  CAS  Google Scholar 

  32. O’Sullivan GC, Collins JK, Kelly J, Morgan J, Madden M, Shanahan F (1997) Micrometastases: marker of metastatic potential or evidence of residual disease? Gut 40(4):512–515

    PubMed  CAS  Google Scholar 

  33. O’Sullivan GC, Sheehan D, Clarke A, Stuart R, Kelly J, Kiely MD, Walsh T, Collins JK, Shanahan F (1999) Micrometastases in esophagogastric cancer: high detection rate in resected rib segments. Gastroenterology 116(3):543–548

    Article  PubMed  CAS  Google Scholar 

  34. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59(13):3128–3133

    PubMed  CAS  Google Scholar 

  35. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666

    Article  PubMed  CAS  Google Scholar 

  36. Pearson S, Jia H, Kandachi K (2004) China approves first gene therapy. Nat Biotechnol 22(1):3–4

    Article  PubMed  CAS  Google Scholar 

  37. Ramarathinam L, Castle M, Wu Y, Liu Y (1994) T cell costimulation by B7/BB1 induces CD8 T cell-dependent tumor rejection: an important role of B7/BB1 in the induction, recruitment, and effector function of antitumor T cells. J Exp Med 179(4):1205–1214

    Article  PubMed  CAS  Google Scholar 

  38. Scheule RK (2000) The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev 44(2–3):119–134

    Article  PubMed  CAS  Google Scholar 

  39. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2(6):389–400

    PubMed  CAS  Google Scholar 

  40. Shimizu J, Yamazaki S, Sakaguchi S. (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218

    PubMed  CAS  Google Scholar 

  41. Soden DM, Larkin JO, Collins CG, Tangney M, Aarons S, Piggott J, Morrissey A, Dunne C, O’Sullivan GC (2005) Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours. Cancer Lett 232(2):300–310

    Article  PubMed  CAS  Google Scholar 

  42. Steitz J, Bruck J, Lenz J, Knop J, Tuting T (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T cell-dependent immune defense of B16 melanoma. Cancer Res 61(24):8643–8646

    PubMed  CAS  Google Scholar 

  43. Thomas MC, Greten TF, Pardoll DM, Jaffee EM (1998) Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum Gene Ther 9(6):835–843

    Article  PubMed  CAS  Google Scholar 

  44. Townsend SE, Su FW, Atherton JM, Allison JP (1994) Specificity and longevity of antitumor immune responses induced by B7-transfected tumors. Cancer Res 54(24):6477–6483

    PubMed  CAS  Google Scholar 

  45. U.S. CSWG (2005) United states cancer statistics: 1999–2002 incidence and mortality web-based report version

  46. Wang HY, Lee DA, Peng G, Guo Z, Li Y, Kiniwa Y, Shevach EM, Wang RF (2004) Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20(1):107–118

    Article  PubMed  CAS  Google Scholar 

  47. Wei WZ, Morris GP, Kong YC (2004) Anti-tumor immunity and autoimmunity: a balancing act of regulatory T cells. Cancer Immunol Immunother 53(2):73–78

    Article  PubMed  CAS  Google Scholar 

  48. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201(5):779–791

    Article  PubMed  CAS  Google Scholar 

  49. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowlegment

Mark Tangney and Gerald C. O’Sullivan are funded by the Health Research Board of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tangney.

Additional information

This article is a symposium paper from the Annual Meeting of the “International Society for Cell and Gene Therapy of Cancer”, held in Shenzhen, China, on 9–11 December 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangney, M., Casey, G., Larkin, J.O. et al. Non-viral in vivo immune gene therapy of cancer: combined strategies for treatment of systemic disease. Cancer Immunol Immunother 55, 1443–1450 (2006). https://doi.org/10.1007/s00262-006-0169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0169-z

Keywords

Navigation