Skip to main content
Log in

Reactive atom plasma (RAP) figuring machine for meter class optical surfaces

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

A new surface figuring machine called Helios 1200 is presented in this paper. It is designed for the figuring of meter sized optical surfaces with form accuracy correction capability better than 20 nm rms within a reduced number of iterations. Unlike other large figuring facilities using energy beams, Helios 1200 operates a plasma torch at atmospheric pressure, offers a high material removal rate, and a relatively low running cost. This facility is ideal to process large optical components, lightweight optics, silicon based and difficult to machine materials, aspheric, and free form surfaces. Also, the surfaces processed by the reactive atom plasma (RAP) are easy to fine polish through hand conventional sub-aperture polishing techniques. These unique combined features lead to a new capability for the fabrication of optical components opening up novel design possibilities for optical engineers. The key technical features of this large RAP machine are fast figuring capabilities, non-contact material removal tool, the use of a near Gaussian footprint energy beam, and a proven tool path strategy for the management of the heat transfer. Helios 1200 complies with the European machine safety standard and can be used with different types of reactive gases using either fluorine or chlorine compounds. In this paper, first the need for large optical component is discussed. Then, the RAP facility is described: radio frequency R.F generator, plasma torch, and 3 axis computer numerically controlled motion system. Both the machine design and the performance of the RAP tool is assessed under specific production conditions and in the context of meter class mirror and lens fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CELT:

California extremely large telescope

CCP:

Capacitively coupled plasma

CF4 :

Carbon tetra-fluoride

CPP:

Continuous phase plate

EUVL:

Extreme ultra violet lithography

ELT:

Extremely large telescopes

FWHM:

Full width at half maximum

IBF:

Ion beam figuring

ICP:

Inductively coupled plasma

NF3 :

Nitrogen tri-fluoride

RF:

Radio frequency

ROC:

Radius of curvature

RAP:

Reactive atom plasma

RMS:

Root mean square

SWR:

Standing wave ration

SF6 :

Sulfur hexafluoride

References

  1. Allen LN, Keim RE, Lewis TS, Ullom JR (1992) Surface error correction of a Keck 10-m telescope primary mirror segment by ion figuring. In: Proceedings of SPIE, advanced optical manufacturing and testing II1531. doi:10.1117/12.134862

  2. Shore P, May-Miller R (2003) Production challenge of the optical segments for extra large telescopes. In: Proceedings of international progress on advanced optics and sensors, pp 25–30

  3. Jiang JX, Shore P, McKeown P, Whitehouse D (2012) Ultra-precision engineering: from physics to manufacturing. Philos Trans R Soc A. doi:10.1098/rsta.2012.0178

    Google Scholar 

  4. Frost F, Fechner R, Ziberi B, Völlner J, Flamm D, Schindler A (2009) Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J Phys: Condens Matter 21:224026. doi:10.1088/0953-8984/21/22/224026

    Article  Google Scholar 

  5. Arnold T, Boehm G, Fechner R, Meister J, Nickel A, Frost F, Haensel T, Schindler A (2010) Ultra-precision surface finishing by ion beam and plasma jet techniques status and outlook. Nucl Instrum Methods Phys Res A 616:147–156. doi:10.1016/j.nima.2009.11.013

    Article  Google Scholar 

  6. Ando M, Numata A, Saito N, Taniguchi J, MiyamotoI (2004) Development of ion beam figuring system for mirror shape correction of minute area, oral presentation slides. In: Conference of EUVA

  7. Jacobs S, Shorey AB (2000) Magnetorheological finishing: new fluids for new materials. In: Conference paper of optical fabrication and testing (OF&T), OSA technical digest, paper OWB1 pp 142–144

  8. Harris D (2011) History of magnetorheological finishing. In: Proceedings of SPIE, Window and Dome Technologies and Materials XII, vol 8016. doi:10.1117/12.882557

  9. Yamamura K, Sano Y, Shibahara M, Yamauchi K, Mimura H, Endo K, Mori Y (2006) Ultra-precision machining utilizing numerically controlled scanning of localized atmospheric pressure plasma. Jpn J Appl Phys 45:8270–8276. doi:10.1143/JJAP.45.8270

    Article  Google Scholar 

  10. Yamamura K, Mimura H, Yamauchi K, Sano Y, Saito A, Kinoshita T, Endo K, Mori Y, Souvorov A, Yabashi M, Tamasaku K, Ishikawa T (2002) Aspheric surface fabrication in nm-level accuracy by numerically controlled plasma chemical vaporization machining (CVM) and elastic emission machining (EEM). In: Proceedings of SPIE, X-ray mirrors, crystals, and multilayers II, 4782: 265–270. doi:10.1117/12.453749

  11. Takino H, Yamamura K, Sano Y, Mori Y (2010) Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication. Appl Opt 49:4434–4440. doi:10.1364/AO.49.004434

    Article  Google Scholar 

  12. Zhang J, Wang B, Dong S (2008) Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surfaces. Front Electr Electron Eng China 3(4):480–487. doi:10.1007/s11460-008-0072-9

    Article  Google Scholar 

  13. Bo W, Jufan Z, Shen D (2009) New development of atmospheric pressure plasma polishing. Chin Opt Lett 7(6):537–538. doi:10.3788/COL20090706.0537

    Article  Google Scholar 

  14. Arnold T, Boehm G (2012) Application of atmospheric plasma jet machining (PJM) for effective surface figuring of SiC. Precis Eng 36:546–553. doi:10.1016/j.precisioneng.2012.04.001

    Article  Google Scholar 

  15. Arnold T, Boehm G, Paetzelt H (2012) Plasma jet machining based process chain for the manufacturing of complex shaped synchrotron mirrors. In: 12th conference of Euspen, pp Nr. P6.05

  16. Revella PJ, Goldspinka GF (1984) A review of reactive ion beam etching for production. In: Vacuum special issue: proceedings of the SIRA international seminar, film preparation and etching using vacuum or plasma technology, vol 34, no 3–4, pp 455–462

  17. Castelli M, Jourdain R, Morantz P, Shore P (2011) Reactive atom plasma for rapid figure correction of optical surfaces. Key Eng Mater Precis Mach VI 496:182–187

    Article  Google Scholar 

  18. Jourdain R, Castelli M, Shore P, Subrahmanyan P (2010) Process characterisation and key tasks for cost-effective 3D figuring of specular surfaces using RAP. In: 10th Conference of Euspen, pp 185–188

  19. Verma Y, Chang AK, Berrett JW, Futtere K, Gardopee GJ, Kelley J, Kyler T, Lee J, Lyford N, Proscia D, Sommer PR (2006) Rapid damage-free shaping of silicon carbide using reactive atom plasma (RAP) processing. In: Proceedings of SPIE, optical fabrication for large telescopes II, vol 6273. doi:10.1117/12.671969

  20. Webb K (2007) Advances in fabrication technologies for light weight CVC SiC mirrors. In: Proceedings of SPIE 6666: 01–06

  21. Fanara C, Shore P, Nicholls JR, Lyford N, Kelley J, Carr J, Sommer P (2006) A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces. Adv Eng Mater 8:933–939. doi:10.1002/adem.200600028

    Article  Google Scholar 

  22. Paul KC, Hatazawa S, Takahashi M, Cliteur GJ, Sakuta T (1999) Diagnoses of inductively coupled SF6 and N2 plasmas at atmospheric pressure. Thin Solid Films 345(1):134–139. doi:10.1016/S0040-6090(99)00103-0

    Article  Google Scholar 

  23. D’Agostino R, Flamm DL (1981) Plasma etching of Si and SiO2 in SF6-O2 mixtures. J Appl Phys 52:162–167. doi:10.1063/1.328468

    Article  Google Scholar 

  24. Tamkin JM, Milster TD (2010) Effects of structured mid-spatial frequency surface errors on image performance. Appl Opt 49:6522–6535. doi:10.1364/AO.49.006522

    Article  Google Scholar 

  25. Mast T, Nelson J, Sommargren G (2000) Primary mirror segment fabrication for CELT. In: Proceedings of SPIE: optical design, materials, fabrication, and maintenance, vol 4003. doi:10.1117/12.391538

  26. Néauport J, Ribeyre X, Daurios J, Valla D, Lavergne M, Beau V, Videau L (2003) Design and optical characterization of a large continuous phase plate for laser integration line and laser Megajoule facilities. Appl Opt 42:2377–2382. doi:10.1364/AO.42.002377

    Article  Google Scholar 

  27. Castelli M, Jourdain R, Morantz P, Shore P (2012) Rapid optical surface figuring using reactive atom plasma. J Precis Eng 36:467–476. doi:10.1016/j.precisioneng.2012.02.005

    Article  Google Scholar 

  28. Jourdain R, Castelli M, Morantz P, Shore P (2012) Plasma surface figuring of large optical components. In: Proceedings of SPIE, optical micro- and nanometrology IV, vol 8430 doi:10.1117/12.924798

  29. Inventor: Kelley J, Carr JW, Fiske PS, Chang A (2005) Assignee: RAPT Industries Inc., Patent PCT/US 2005/00061774 A1

  30. Eckert HU (1974) The induction arc: a state of the art review. High Temp Sci 6:99–134

    Google Scholar 

  31. Boulos I (1985) The inductively coupled RF (radio frequency) plasma. Pure Appl Chem 57:1321–1352

    Article  Google Scholar 

  32. Jourdain R, Morantz P, Shore P (2013) Optical test system for meter scale optics. Optics express (to be submitted)

Download references

Acknowledgments

This research work was funded by the Cranfield Innovative Manufacturing Research Centre (2007–2012) of the Engineering and Physical Sciences Research Council UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jourdain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jourdain, R., Castelli, M., Shore, P. et al. Reactive atom plasma (RAP) figuring machine for meter class optical surfaces. Prod. Eng. Res. Devel. 7, 665–673 (2013). https://doi.org/10.1007/s11740-013-0467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0467-1

Keywords

Navigation