Skip to main content
Log in

Novel Merger of spectroscopy and refractive index sensing for modelling hyper sensitive hexa-slotted plasmonic sensor for transformer oil monitoring in near-infrared region

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research presents a novel link between refractive index sensing and spectroscopy by designing a “photonic crystal fiber” based “refractive index (\(RI\))” sensor. The proposed sensor is based on the “surface plasmon resonance” phenomenon. The sensor monitors the transformer oil (\(To\)) moisture content as moisture depletes its quality. The change in the moisture content changes the \(RI\) of the transformer oil. Thus, the presented sensor can identify the minimal change in the \(RI\) of the \(To\). The sensor is designed to operate in the \(RI\) range of \(1.33-1.34 \mathrm{RIU}\), with a step size of \(0.002.\) Using the wavelength interrogation method, the proposed sensor’s wavelength sensitivity is 25,000 nm/RIU and 22,500 nm/RIU along X-polarization (X-pol.) and Y-polarization (Y-pol.), respectively. The amplitude interrogation technique is used to calculate the amplitude sensitivity obtained from the proposed sensor, which is \(17080 {\mathrm{RIU}}^{-1}\) and \(18690 {\mathrm{RIU}}^{-1}\) corresponding to X-pol. and -pol., respectively. The sensor resolution of the sensor is \(4.00\times {10}^{-6} \mathrm{RIU}\) and \(4.44\times {10}^{-6} \mathrm{RIU}\) corresponds to X-pol. and Y-pol., respectively. Full-width half maximum obtained from the proposed sensor is \(73 \mathrm{nm}\) and \(55 \mathrm{nm}\) for X- and Y-pol.\(,\) respectively. The figure of merit obtained from the presented sensor is \(342.46 {\mathrm{RIU}}^{-1}\) and \(409.09 {\mathrm{RIU}}^{-1}\) for \(X\)- and Y-pol., respectively. Thus, the prospective sensor can act as an ideal device for the quality assessment of \(To\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Detail about data has been provided in the article.

References

  • Allsop, T., Neal, R., Mou, C., Brown, P., Saied, S., Rehman, S., Kalli, K., Webb, D.J., Sullivan, J., Mapps, D., Bennion, I.: Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors. Appl. Opt. 48(2), 276–286 (2009)

    Article  ADS  Google Scholar 

  • Almewafy, B.H., Areed, N.F.F., Hameed, M.F.O., Obayya, S.S.A.: Modified D-shaped SPR PCF polarization filter at telecommunication wavelengths. Opt. Quantum Electron. 51, 93 (2019). https://doi.org/10.1007/s11082-019-1885-x

    Article  Google Scholar 

  • Bing, P., Sui, J., Wu, G., Guo, X., Zhongyang Li, L.T., Yao, J.: Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors. Plasmonics 15, 1071–1076 (2020). https://doi.org/10.1007/s11468-020-01131-9

    Article  Google Scholar 

  • Buckley, R., Berini, P.: Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express 15(19), 12174–12182 (2007)

    Article  ADS  Google Scholar 

  • Chen, N., Zhang, X., Chang, M., Lu, X., Zhou, J.: Broadband plasmonic polarization filter based on photonic crystal fiber with dual-ring gold layer. Micromachines 11, 470 (2020). https://doi.org/10.3390/mi11050470

    Article  Google Scholar 

  • Dash, J.N., Das, R., Jha, R.: AZO coated microchannel incorporated PCF-based SPR sensor: A numerical analysis. IEEE Photonics Technol. Lett. 30(11), 1032–1035 (2018)

    Article  ADS  Google Scholar 

  • Falatah, A.M., El-Naggar, A.Y.: Transformer oil quality in view of its physicochemical, electrical properties and dissolved gas analysis. Pet. Sci. Technol. 36(19), 1552–1558 (2018)

    Article  Google Scholar 

  • Fang, H., Wei, C., Wang, D., Yuan, L., Jiao, S., Bao, Z., Yang, H.: Research on photonic crystal fiber based on a surface plasmon resonance sensor with segmented silver-titanium dioxide film. J. Opt. Soc. Am. B 37(3), 76–744 (2020)

    Article  Google Scholar 

  • Feng, D., Liu, G., Li, Q., Cui, J., Zheng, J., Ye, Z.: Design of infrared SPR sensor based on bimetallic nanowire gratings on plastic optical fiber surface. IEEE Sens. J. 15(1), 255–259 (2015)

    Article  ADS  Google Scholar 

  • G. o. Punjab.: Punjab State Power Corporation Limited. PSEB Head Office, The Mall, Patiala. 2021. [Online]. Available: https://pspcl.in/. Accessed 07 June 2021

  • Gandhi, M.S.A., Chu, S., Senthilnathan, K., Babu, P.R., Nakkeeran, K., Li, Q.: Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl. Sci. 9(5), 949 (2019)

    Article  Google Scholar 

  • Haider, F., Aoni, R.A., Ahmed, R., Islam, M.S., Miroshnichenko, A.E.: Propagation controlled photonic crystal fiber-based plasmonic sensor via scaled-down approach. IEEE Sens. J. 19(3), 962–969 (2019)

    Article  ADS  Google Scholar 

  • Haider, F., Aoni, R.A., Ahmed, R., Mahdiraji, G.A., Azman, M.F.: Mode-multiplex plasmonic sensor for multi-analyte detection. Opt. Lett. 45(14), 3945–3948 (2020)

    Article  ADS  Google Scholar 

  • Hasan, M.R., Akter, S., Rifat, A.A., Sohel Rana, K.A., Ahmed, R., Subbaraman, H., Abbott, D.: Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 18(1), 133–140 (2018)

    Article  ADS  Google Scholar 

  • Hossain, M., Hossain, M.S., Islam, S., Sakib, M., Islam, K.Z.: Numerical development of high-performance quasi D-shape PCF-SPR biosensor: an external sensing approach employing gold. Results Phys. 18, 103281 (2020). https://doi.org/10.1016/j.rinp.2020.103281

    Article  Google Scholar 

  • Hottin, J., Wijaya, E., Hay, L., Maricot, S., Bouazaoui, M., Vilcot, J.-P.: Comparison of gold and silver/gold bimetallic surface for highly sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8, 619–624 (2013). https://doi.org/10.1007/s11468-012-9446-1

    Article  Google Scholar 

  • Huang, T.: Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics 12, 583–588 (2017). https://doi.org/10.1007/s11468-016-0301-7

    Article  Google Scholar 

  • Islam, M.S., Cordeiro, C.M.B., Sultana, J., Aon, R.A., Feng, S.: A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085 (2019). https://doi.org/10.1109/ACCESS.2019.2922663

    Article  Google Scholar 

  • Islam, M.R., AbuJamil, M., Zaman, M.S.-U., Ahsan, S.A.H., Pulak, M.K.: Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss. Optik 221, 165311 (2020a). https://doi.org/10.1016/j.ijleo.2020.165311

    Article  ADS  Google Scholar 

  • Islam, M.R., Jamil, M.A., Zaman, M.S.U., Ahsan, S.A.H.: Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss. Optik 221, 165311 (2020b). https://doi.org/10.1016/j.ijleo.2020.165311

    Article  ADS  Google Scholar 

  • Jiang, J., Wu, X., Wang, Z., Zhang, C., Ma, G., Li, X.: Moisture Content measurement in transformer oil using micro-nano fiber. IEEE Trans. Dielectr. Electr. Insul. 27(6), 1829–1836 (2020)

    Article  Google Scholar 

  • Jiao, S., Gu, S., Yang, H., Fang, H., Xu, S.: Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating. Appl. Opt. 57(28), 8350–8358 (2018)

    Article  ADS  Google Scholar 

  • Johnson, J.: Near-infrared spectroscopy (NIRS) for taxonomic entomology: a brief review. J. Appl. Entomol. 144(4), 241–250 (2020)

    Article  Google Scholar 

  • Khaleque, A., Hattori, H.T.: Ultra-broadband and compact polarization splitter based on gold filled dual-core. J. Appl. Phys. 118, 143101 (2015). https://doi.org/10.1063/1.4932659

    Article  ADS  Google Scholar 

  • Liu, C., Su, W., Wang, F., Li, X., Liu, Q., Mu, H., Sun, T., Chu, P.K., Liu, B.: Birefringent PCF-based SPR sensor for a broad range of low refractive index detection. IEEE Photonics Technol. Lett. 30(16), 1471–1474 (2018)

    Article  ADS  Google Scholar 

  • Liu, C., Wang, J., Jin, X., Wang, F., Yang, L., Lv, J., Fu, G.: Near-infrared surface plasmon resonance sensor based on photonic crystal fiber with big open rings. Optik 207, 164466 (2020). https://doi.org/10.1016/j.ijleo.2020.164466

    Article  ADS  Google Scholar 

  • Lu, J., Li, Y., Han, Y., Liu, Y., Gao, J.: D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl. Opt. 57(19), 5268–5272 (2018)

    Article  ADS  Google Scholar 

  • Mahanta, D.K., Laskar, S.: Water quantity-based quality measurement of transformer oil using polymer optical fiber as sensor. IEEE Sens. J. 18(4), 1506–1512 (2018)

    Article  ADS  Google Scholar 

  • Mahfuz, M.A., Hasan, M.R., Momota, M.R., Masud, A., Akter, S.: Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method. OSA Contin. 2(5), 1713–1725 (2019)

    Article  Google Scholar 

  • Mahfuz, M.A., Hossain, M.A., Haque, E., Hai, N.H., Namihira, Y.: Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band. IEEE Sens. J. 20(14), 7692–7700 (2020)

    Article  ADS  Google Scholar 

  • Márquez-Cruz, V., Albert, J.: High-resolution NIR TFBG-assisted biochemical sensors. J. Lightwave Technol. 33(16), 3363–3373 (2015)

    Article  ADS  Google Scholar 

  • Mehmood, M.A., Nazir, M.T., Li, J., Wang, F., Azam, M.M.: Comprehensive investigation on service aged power transformer insulating oil after decades of effective performance in field. Arab. J. Sci. Eng. 45(225), 6517–6528 (2020)

    Article  Google Scholar 

  • Mohammad, A.M., Aslam, M.M., Rojy, M.M., Paul, A.K.: Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt. Mater. 90, 315–321 (2019). https://doi.org/10.1016/j.optmat.2019.02.012

    Article  Google Scholar 

  • Mollah, M.A., Islam, M.S.: Novel single hole exposed-suspended core localized surface plasmon resonance sensor. IEEE Sens. J. 21(3), 2813–2820 (2021)

    Google Scholar 

  • Ng, W.L., Rifat, A.A., Wong, W.R., Mahdiraji, G.A., Adikan, F.R.M.: A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics 13, 1165–1170 (2018). https://doi.org/10.1007/s11468-017-0617-y

    Article  Google Scholar 

  • Pal, N., Maurya, J.B., Prajapati, Y.K., Kumar, S.: LiF-Ag-Si-TMDs based long-range SPR sensor in visible and NIR spectrum. Optik 274, 170556 (2023). https://doi.org/10.1016/j.ijleo.2023.170556

    Article  ADS  Google Scholar 

  • Paul, A.K.: Design and analysis of photonic crystal fiber plasmonic refractive Index sensor for condition monitoring of transformer oil. OSA Contin. 3(8), 2253–2263 (2020)

    Article  Google Scholar 

  • Paul, A.K., Sarkara, A.K., Islam, M.H., Morshed, M.: Dual-core photonic crystal fiber based surface plasmon resonance. Optik 170, 400–408 (2018). https://doi.org/10.1016/j.ijleo.2018.05.131

    Article  ADS  Google Scholar 

  • Paul, A.K., Sarkar, A.K., Khaleque, A.: Dual-core photonic crystal fiber plasmonic refractive indexsensor: a numerical analysis. Photonics Sens. 9(2), 151–161 (2019)

    Article  ADS  Google Scholar 

  • Pope, R.M., Fry, E.S.: Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36(33), 8710–8723 (1997)

    Article  ADS  Google Scholar 

  • R, India.: Research India: One Stop Solution for your all application. Research India. 2010. [Online]. Available: https://research-india.co.in/about_us.html. Accessed 7 June 2021

  • Rahman, M.M., Mou, F.A., Bhuiyan, M.I.H., Islam, M.R.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio Sens. Res. 29, 100356 (2020). https://doi.org/10.1016/j.sbsr.2020.100356

    Article  Google Scholar 

  • Rastogi, K., Sharma, A.K., Prajapati, Y.K.: Demonstration of graphene-assisted tunable surface plasmonic resonance sensor using machine learning model. Appl. Phys. A 129, 351 (2023). https://doi.org/10.1007/s00339-023-06630-0

    Article  ADS  Google Scholar 

  • Reeves, W., Knight, J., Russell, P., Roberts, P.: Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10(14), 609–613 (2002)

    Article  ADS  Google Scholar 

  • Rodger, A., Steel, M.J., Goodchild, S.C., Chmel, N.P., Reason, A.: Transformation of aqueous protein attenuated total reflectance infra-red absorbance spectroscopy to transmission. Camb. Core 1, e8 (2020). https://doi.org/10.1017/qrd.2020.11

    Article  Google Scholar 

  • Rodiah, Y., Haryono, T., Wijaya, F.D.: Transformer oil dielectric characteristics in microwave-assisted reconditioning processes. J. Electr. Eng. Technol. 15, 1261–1267 (2020). https://doi.org/10.1007/s42835-020-00384-y

    Article  Google Scholar 

  • Sakib, M.N., Hossain, M.B., Al-Tabatabaie, K.F., Mehedid, I.M.: High-performance dual-core D-shape PCF-SPR sensor modelling employing gold coat. Results Phys. 15, 102788 (2019). https://doi.org/10.1016/j.rinp.2019.102788

    Article  Google Scholar 

  • Samy, A.M., Ibrahim, M.E., Abd-Elhady, A.M., Izzularab, M.A.: On electric field distortion for breakdown mechanism of nano-filled transformer oil. Int. J. Electr. Power Energy Syst. 117, 105632 (2020). https://doi.org/10.1016/j.ijepes.2019.105632

    Article  Google Scholar 

  • Shafkat, A.: Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber. Sens. Bio Sens. Res. 28, 100324 (2020). https://doi.org/10.1016/j.sbsr.2020.100324

    Article  Google Scholar 

  • Shakya, A.K., Singh, S.: Design and analysis of dual-polarized Au and TiO2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach. J. Nanophotonics 15(1), 016009 (2021a)

    Article  ADS  Google Scholar 

  • Shakya, A.K., Singh, S.: Design of dual-polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum. Opt. Commun. 478, 126372 (2021b). https://doi.org/10.1016/j.optcom.2020.126372

    Article  Google Scholar 

  • Shakya, A.K., Singh, S.: Design of biochemical biosensor based on transmission, absorbance and refractive index. Biosens. Bioelectron. X 10, 100089 (2022a). https://doi.org/10.1016/j.biosx.2021.100089

    Article  Google Scholar 

  • Shakya, A.K., Singh, S.: State of the art in fiber optics sensors for heavy metals detection. Opt. Laser Technol. 153, 108246 (2022b). https://doi.org/10.1016/j.optlastec.2022.108246

    Article  Google Scholar 

  • Shakya, A.K., Singh, S.: Design of refractive index sensing based on optimum combination of plasmonic materials gold with indium tin oxide/titanium dioxide. J. Nanophotonics 16(2), 026010–026010 (2022c)

    Article  ADS  Google Scholar 

  • Shakya, A.K., Ramola, A., Singh, S., Van, V.: Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing. Opt. Express 30(6), 9233–9255 (2022)

    Article  ADS  Google Scholar 

  • Singh, S., Prajapati, Y.K.: Highly sensitive refractive index sensor based on D-shaped PCF with gold-graphene layers on the polished surface. Appl. Phys. A 125, 437 (2019). https://doi.org/10.1007/s00339-019-2731-5

    Article  ADS  Google Scholar 

  • Singh, S., Prajapati, Y.K.: Dual-polarized ultrahigh sensitive gold/MoS2/graphene-based D-shaped PCF refractive index sensor in visible to near-IR region. Opt. Quantum Electron. 52, 17 (2020). https://doi.org/10.1007/s11082-019-2122-3

    Article  Google Scholar 

  • Singh, S., Prajapati, Y.K.: Antimonene-gold based twin-core SPR sensor with a side-polished semi-arc groove dual sensing channel: an investigation with 2D material. Opt. Quantum Electron. 54, 114 (2022). https://doi.org/10.1007/s11082-021-03505-7

    Article  Google Scholar 

  • Thorlabs.: Step-Index Multimode Fiber Optic Patch Cables: SMA to SMA. Thorlabs, Inc., 1 January 1999. [Online]. Available: https://fineabc.top/newgrouppage9.cfm?objectgroup_id=351&pn=M15L01#8693. Accessed 7 June 2021

  • Wang, G., Lu, Y., Duan, L., Yao, J.: A refractive index sensor based on PCF with ultra-wide detection range. IEEE J. Sel. Top. Quantum Electron. 27(4), 5600108 (2021)

    Article  Google Scholar 

  • Yang, X., Lu, Y., Liu, B., Yao, J.: Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12, 489–496 (2017). https://doi.org/10.1007/s11468-016-0289-z

    Article  Google Scholar 

  • Yang, H., Liu, M., Chen, Y., Xiao, L.G.G., Liu, H.: Highly sensitive graphene-Au coated plasmon resonance PCF sensor. Sensors 21(818), 1–14 (2021)

    Google Scholar 

  • Yasli, A., Ademgil, H.: Geometrical comparison of photonic crystal fiber-based surface plasmon resonance sensors. Opt. Eng. 57(3), 030801 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

“The author's enormous thanks to all four anonymous reviewers and Editor-in-Chief for their comments, concerns, queries, and constructive suggestions. This R&D work is performed under All India Council of Technical Education (AICTE), National Doctoral Fellowship (NDF) for AICTE NDF RPS project sanctioned order no: File No.8-2/RIFD/RPS-NDF/Policy-1/ 2018-19 dated 13/03/2019”.

Funding

The authors do not receive any financial support for this research work.

Author information

Authors and Affiliations

Authors

Contributions

AS: Simulation work, writing original draft and Editing; SS: Review & Editing, Supervision.

Corresponding author

Correspondence to Amit Kumar Shakya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All authors of this paper have read and approved the final version submitted. The contents of this manuscript have not been copyrighted or published previously. The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakya, A.K., Singh, S. Novel Merger of spectroscopy and refractive index sensing for modelling hyper sensitive hexa-slotted plasmonic sensor for transformer oil monitoring in near-infrared region. Opt Quant Electron 55, 764 (2023). https://doi.org/10.1007/s11082-023-05016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05016-z

Keywords

Navigation