Skip to main content
Log in

Demonstration of graphene-assisted tunable surface plasmonic resonance sensor using machine learning model

  • Rapid Communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work illustrates the viability of optics ideas using a machine learning (ML) technique to choose the optimal SPR sensor for a particular set of structural parameters. Particle swarm optimization (PSO) algorithm is utilized in conjunction with an ML model to design a tunable surface plasmonic resonance (SPR) sensor. A trained ML model is applied to the PSO algorithm to develop the SPR sensor with the desired sensing performance. Using a learned ML model to forecast sensor performance rather than sophisticated electromagnetic calculation techniques allows the PSO algorithm to optimize solutions faster with four orders of magnitude. This composite algorithm’s implementation enabled us to rapidly and precisely create an SPR sensor with a sensitivity of 68.754 °/RIU and having an impressive figure of merit of 100. We anticipate that the proposed effective and precise method will pave the way for the future development of plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and materials

Not applicable.

References

  1. R. Kumar, S. Pal, Y.K. Prajapati, S. Kumar, J.P. Saini, Sensitivity improvement of a MXene-immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens. J. 22(7), 6536–6543 (2022)

    Article  ADS  Google Scholar 

  2. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  3. S.K. Jaiswal, J.B. Maurya, Y.K. Prajapati, Field-dependent performance parameters of a plasmonic structure: an analysis of penetration depth and propagation length. J. Opt. Soc. Am. B 39, 1003–1009 (2022)

    Article  ADS  Google Scholar 

  4. M.K. Singh, S. Pal, Y.K. Prajapati, Design and analysis of an SPR sensor based on antimonene and platinum for the detection of formalin. IEEE Trans. Nanobiosci. (2022). https://doi.org/10.1109/TNB.2022.3159532.2022

    Article  Google Scholar 

  5. M.A. Shenashen, M.Y. Emran, A. El Sabagh, M.M. Selim, A. Elmarakbi, S.A. El-Safty, Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Prog. Mater Sci. 124, 100866 (2022)

    Article  Google Scholar 

  6. Y. Ma, W. Zheng, Y.N. Zhang, X. Li, Y. Zhao, Optical fiber SPR sensor with surface ion imprinting for highly sensitive and highly selective Ni2+ detection. IEEE Trans. Instrum. Meas. 70, 1–6 (2021)

    Google Scholar 

  7. J.C. Gomes, L.C. Souza, L.C. Oliveira, Smart SPR sensor: machine learning approaches to create intelligent surface plasmon based sensors. Biosens. Bioelectron. 172, 112760 (2021)

    Article  Google Scholar 

  8. E.D. Chubchev, K.A. Tomyshev, I.A. Nechepurenko, A.V. Dorofeenko, O.V. Butov, Machine learning approach to data processing of TFBG-assisted SPR sensors. J. Lightwave Technol. 40(9), 3046–3054 (2022)

    Article  ADS  Google Scholar 

  9. H. Tao, T. Wu, M. Aldeghi, T.C. Wu, A. Aspuru-Guzik, E. Kumacheva, Nanoparticle synthesis assisted by machine learning. Nat. Rev. Mater. 6(8), 701–716 (2021)

    Article  ADS  Google Scholar 

  10. M. Mohseni-Dargah, Z. Falahati, B. Dabirmanesh, P. Nasrollahi, K. Khajeh, Machine learning in surface plasmon resonance for environmental monitoring, in Cognitive Data Science in Sustainable Computing, Artificial Intelligence and Data Science in Environmental Sensing, ed. by M. Asadnia, A. Razmjou, A. Beheshti. (Academic Press, 2022), pp. 269–298

  11. G. Moon, J.R. Choi, C. Lee, Y. Oh, K.H. Kim, D. Kim, Machine learning-based design of meta-plasmonic biosensors with negative index metamaterials. Biosens. Bioelectron. 164, 112335 (2020)

    Article  Google Scholar 

  12. F. Lussier, V. Thibault, B. Charron, G.Q. Wallace, J.-F. Masson, Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 124, 115796 (2020)

    Article  Google Scholar 

  13. C.-S. Ho, N. Jean, C.A. Hogan, L. Blackmon, S.S. Jeffrey, M. Holodniy, N. Banaei, A.A. Saleh, S. Ermon, J. Dionne, Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  14. G. Moon, J. Lee, H. Lee, H. Yoo, K. Ko, S. Im, D. Kim, Machine learning and its applications for plasmonics in biology. Cell Rep. Phys. Sci. 3, 101042 (2022)

    Article  Google Scholar 

  15. A. Morellos et al., Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 152, 104–116 (2016)

    Article  Google Scholar 

  16. T.C. Hollon, B. Pandian, A.R. Adapa et al., Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. (2020). https://doi.org/10.1038/s41591-019-0715-9

    Article  Google Scholar 

  17. P. Khare, M. Goswami, AI Algorithm for Mode Classification of PCF SPR Sensor Design (2021). arXiv preprint arXiv:2107.06184

  18. L. Han, C. Xu, T. Huang, X. Dang, Improved particle swarm optimization algorithm for high performance SPR sensor design. Appl. Opt. 60(6), 1753–1760 (2021)

    Article  ADS  Google Scholar 

  19. Y. Sun, H. Cai, X. Wang, S. Zhan, Optimization methodology for structural multiparameter surface plasmon resonance sensors in different modulation modes based on particle swarm optimization. Opt. Commun. 431, 142–150 (2019)

    Article  ADS  Google Scholar 

  20. Y.K. Prajapati, J.B. Maurya, A.K. Sharma, Tunable and enhanced performance of graphene-assisted plasmonic sensor with photonic spin Hall effect in near infrared: analysis founded on graphene’s chemical potential and components of light polarization. J. Appl. Phys. D 55(9), 095102 (2021)

    Article  ADS  Google Scholar 

  21. S. Agarwal, P. Giri, Y.K. Prajapati, P. Chakrabarti, Ti/Ag coated thin film optical SPR sensor for sucrose detection: fabrication, experimental and simulation study. IEEE Sens. J. 16(24), 8865–8873 (2016)

    Article  ADS  Google Scholar 

  22. J.B. Maurya, Y.K. Prajapati, Experimental demonstration of DNA hybridization using graphene-based plasmonic sensor chip. IEEE J. Lightwave Technol. 38(18), 5191–5198 (2020)

    Article  ADS  Google Scholar 

  23. Y. Liu, Y. Mu, K. Chen, Y. Li, J. Guo, Daily activity feature selection in smart homes based on Pearson correlation coefficient. Neural Process. Lett. 51(2), 1771–1787 (2020)

    Article  Google Scholar 

  24. W.T. Li, J. Ma, N. Shende, G. Castaneda, J. Chakladar, J.C. Tsai, L. Apostol, C.O. Honda, J. Xu, L.M. Wong, T. Zhang, Using machine learning of clinical data to diagnose COVID-19: a systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 20(1), 1–3 (2020)

    Article  Google Scholar 

  25. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: machine learning in Python. J. Mach. Learn. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  26. J. Kennedy, R. Eberhart, Particle swarm optimization. in Proceedings of ICNN'95-IEEE international conference on neural networks, vol. 4 (1995), pp. 1942–1948

  27. R. Yan, T. Wang, X. Jiang, Q. Zhong, X. Huang, L. Wang, X. Yue, Design of high-performance plasmonic nanosensors by particle swarm optimization algorithm combined with machine learning. Nanotechnology 31(37), 375202 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Anuj K. Sharma and Yogendra Kumar Prajapati gratefully acknowledge the core research grant (Project no. CRG/2019/002636) from the Science and Engineering Research Board (SERB) India that sponsored this research work.

Funding

No funds, grants or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

KR and YKP contributed to design, methodology, formal analysis, investigation, validation and writing—original draft preparation; AKS contributed to conceptualization, resources, supervision and writing—review and editing.

Corresponding author

Correspondence to Yogendra Kumar Prajapati.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, K., Sharma, A.K. & Prajapati, Y.K. Demonstration of graphene-assisted tunable surface plasmonic resonance sensor using machine learning model. Appl. Phys. A 129, 351 (2023). https://doi.org/10.1007/s00339-023-06630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06630-0

Keywords

Navigation