Skip to main content
Log in

Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A compact plasmonic structure is proposed employing symmetrical metal–insulator-metal (MIM) waveguides coupled to the square resonator for nano-sensing applications, especially for water glucose sensing. Finite difference time domain method is chosen to derivate the output characteristics and magnetic-field distributions. Outcomes illustrate the Fano resonance in the output characteristics can be simply managed by varying the inner and outer lengths and the refractive index of the square cavity. Also, between Fano resonance wavelength and resonator length, a linear behavior exists. These features suggest that physical parameters provide flexibility to propose the structure. Our plasmonic device produces a sensitivity and figure of merit of about 6400 nm/RIU and 1 × 104, respectively. By utilizing the mathematical model for water refractive index, we aim to develop a sensor structure to detect the glucose concentration in water. This designed sensor may discover significant applications in future nanosensing domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alipour, A., Farmani, A., Mir, A.: High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens. J. 18, 7047–7054 (2018)

    Article  ADS  Google Scholar 

  • Amin, M., Farhat, M., Baǧcı, H.: A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Sci. Rep. 3, 2105 (2013)

    Article  ADS  Google Scholar 

  • Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. In: Jason, W. (ed.) Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 308–319. World Scientific, Singapore (2010)

    Google Scholar 

  • Arju, N., Ma, T., Khanikaev, A., Purtseladze, D., Shvets, G.: Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces. Phys. Rev. Lett. 114, 237403 (2015)

    Article  ADS  Google Scholar 

  • Bagci, F., Akaoglu, B.: A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product. J. Appl. Phys. 123, 173101 (2018)

    Article  ADS  Google Scholar 

  • Bagci, F., Akaoglu, B.: Single and multi-band electromagnetically induced transparency-like effects with a four-fold symmetric metamaterial design. Mater. Res. Express 6, 055806 (2019)

    Article  ADS  Google Scholar 

  • Bakhti, S., et al.: Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles. Sci. Rep. 6, 32061 (2016)

    Article  ADS  Google Scholar 

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Becker, J., Trügler, A., Jakab, A., Hohenester, U., Sönnichsen, C.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161–167 (2010)

    Article  Google Scholar 

  • Belushkin, A., Yesilkoy, F., Altug, H.: Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS Nano 12, 4453–4461 (2018)

    Article  Google Scholar 

  • Chen, J., Li, Z., Zou, Y., Deng, Z., Xiao, J., Gong, Q.: Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013a)

    Article  Google Scholar 

  • Chen, Z., Wang, C., Wang, L., Jiang, C., Zhu, H.: Surface plasmonic resonance sensor by metal strip pair arrays. Opt. Quant. Electron. 45, 707–712 (2013b)

    Article  Google Scholar 

  • Chen, K., Zeng, Y., Wang, L., Gu, D., He, J., Wu, S.Y., Ho, H.P., Li, X., Qu, J., Gao, B.Z., Shao, Y.: Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions. J. Biomed. Opt. 21, 127003 (2016)

    Article  ADS  Google Scholar 

  • Christofi, A., Kawaguchi, Y., Alù, A., Khanikaev, A.B.: Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Opt. Lett. 43, 1838–1841 (2018)

    Article  ADS  Google Scholar 

  • Daimon, M., Masumura, A.: Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46, 3811–3820 (2007)

    Article  ADS  Google Scholar 

  • Demirkap, O., Bagci, F., Yilmaz, A.E., Akaoglu, B.: Design of a polarization-independent dual-band electromagnetically induced transparency-like metamaterial. Adv. Electromagn. 8, 63–70 (2019)

    Article  ADS  Google Scholar 

  • Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  • Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)

    Article  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Water-based terahertz metamaterial for skin cancer detection application. IEEE Sens. J. 19, 1519–1524 (2018)

    Article  ADS  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Sensing avian influenza viruses using Terahertz metamaterial reflector. IEEE Sens. J. 19, 5161–5166 (2019a)

    Article  ADS  Google Scholar 

  • Keshavarz, A., Vafapour, Z.: Thermo-optical applications of a novel terahertz semiconductor metamaterial design. JOSA B 36, 35–41 (2019b)

    Article  ADS  Google Scholar 

  • Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Optics Communications 420, 147–156 (2018)

    Article  ADS  Google Scholar 

  • Khurgin, J.B.: How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015)

    Article  ADS  Google Scholar 

  • Kwon, S.H.: Deep subwavelength-scale metal–insulator–metal plasmonic disk cavities for refractive index sensors. IEEE Photonics J. 5, 4800107 (2013)

    Article  ADS  Google Scholar 

  • Lee, K.L., Chang, C.C., You, M.L., Pan, M.Y., Wei, P.K.: Enhancing surface sensing sensitivity of metallic nanostructures using blue-shifted surface plasmon mode and Fano resonance. Sci. Rep. 8, 9762 (2018)

    Article  ADS  Google Scholar 

  • Lepeshov, S., Krasnok, A., Mukhin, I., Zuev, D., Gudovskikh, A., Milichko, V., Belov, P., Miroshnichenko, A.: Fine-tuning of the magnetic Fano resonance in hybrid oligomers via fs-laser-induced reshaping. ACS Photonics 4, 536–543 (2017)

    Article  Google Scholar 

  • Li, H., Lin, L., Xie, S.: Refractive index of human whole blood with different types in the visible and near-infrared ranges. Proc. SPIE 3914, 517–521 (2000)

    Article  ADS  Google Scholar 

  • Li, Y., An, B., Jiang, S., Gao, J., Lu, X.: An effective anti-oxidized strategy for ultra-narrow band absorber as plasmonic sensor. Opt. Quant. Electron. 48, 530 (2016)

    Article  Google Scholar 

  • Li, L., Liang, Y., Peng, W., Liu, Y.: Fano-like resonances in the binary elliptical nanoring resonator array. Opt. Mater. Express 8, 2131–2139 (2018)

    Article  ADS  Google Scholar 

  • Lin, X.S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33, 2874–2876 (2008)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X., Mao, D., Wang, G.: Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt. Lett. 37, 3780–3782 (2012)

    Article  ADS  Google Scholar 

  • Lukyanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  • Ma, F.S., Lee, C.: Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguides. J. Lightwave Technol. 31, 2876–2880 (2013)

    Article  ADS  Google Scholar 

  • Maier, S.: Plasmonics—Fundamentals and Applications. Springer, NewYork (2007)

    Book  Google Scholar 

  • Maier, S.A., Atwater, H.A.: Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101-1–011101-10 (2005)

    Article  ADS  Google Scholar 

  • Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt.-Int. J. Light Electron Opt. 124, 5923–5926 (2013)

    Article  Google Scholar 

  • Mesch, M., et al.: Highly sensitive refractive index sensors with plasmonic nanoantennas − utilization of optimal spectral detuning of Fano resonances. ACS Sens. 3, 960–966 (2018)

    Article  Google Scholar 

  • Miroshnichenko, A., Flach, S., Kivshar, Y.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  • Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. 51, 154 (2019)

    Article  Google Scholar 

  • Naser-Moghadasi, M., Zarrabi, F.B., Pandesh, S., Rajabloo, H., Bazgir, M.: Optical FANO resonance with polarization independence with novel nano-antenna. Opt. Quant. Electron. 48, 266 (2016)

    Article  Google Scholar 

  • Ni, B., Chen, X.Y., Xiong, D.Y., Liu, H., Hua, G.H., Chang, J.H., Zhang, J.H., Zhou, H.: Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt. Quant. Electron. 47, 1339–1346 (2015)

    Article  Google Scholar 

  • Qi, J., Chen, Z., Chen, J., Li, Y., Qiang, W., Xu, J., Sun, Q.: Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 22, 14688–14695 (2014)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 26, 1700–1707 (2012)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Realization of tunable optical filter by photonic crystal ring resonators. Opt.-Int. J. Light Electron Opt. 124, 5377–5380 (2013a)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E 50, 97–101 (2013b)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of four-channel wavelength demultiplexer based on photonic crystal circular ring resonators for optical communications. J. Opt. Commun. 35, 9–15 (2014)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators. J. Mod. Opt. 63, 1078–1086 (2016a)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity. IEEE Sens. J. 16, 3041–3046 (2016b)

    Article  ADS  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12, 999–1006 (2017a)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 249, 168–176 (2017b)

    Article  Google Scholar 

  • Rakhshani, M.R., Mansouri-Birjandi, M.A.: Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 17, 475–481 (2018)

    Article  ADS  Google Scholar 

  • Schuray, A., Weithofer, L., Recher, P.: Fano resonances in Majorana bound states–quantum dot hybrid systems. Phys. Rev. B 96, 085417 (2017)

    Article  ADS  Google Scholar 

  • Sharma, A.K., Jha, R., Pattanaik, H.S., Mohr, G.J.: Design considerations for surface plasmon resonance-based fiber-optic detection of human blood group. J. Biomed. Opt. 14, 064041 (2009)

    Article  ADS  Google Scholar 

  • Tavousi, A., Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018)

    Article  ADS  Google Scholar 

  • Vafapour, Z.: Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance. JOSA A 35, 417–422 (2018a)

    Article  ADS  Google Scholar 

  • Vafapour, Z.: Slow light modulator using semiconductor metamaterial. Integr. Opt. Dev. Mater. Technol. XXII 10535, 105352A (2018b). https://doi.org/10.1117/12.2292259

    Article  Google Scholar 

  • Vafapour, Z.: Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications. Appl. Opt. 57, 722–729 (2018c)

    Article  ADS  Google Scholar 

  • Vafapour, Z.: Polarization-independent perfect optical metamaterial absorber as a glucose sensor in Food Industry applications. IEEE Trans. Nanobiosci. (2019). https://doi.org/10.1109/TNB.2019.2929802

    Article  Google Scholar 

  • Vafapour, Z., Ghahraloud, H.: Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial. JOSA B 35, 1192–1199 (2018)

    Article  ADS  Google Scholar 

  • Vahedian, M., Naser-Moghadasi, M.: The nano loop antenna with Fano resonance and symmetrical formation and reconfigurable characteristic for bio-sensing application. Opt. Quant. Electron. 50, 178 (2018)

    Article  Google Scholar 

  • Wang, J., et al.: Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt. Express 21, 2236–2244 (2013)

    Article  ADS  Google Scholar 

  • Wang, Z., Wang, C., Sun, F., Fu, Z., Xiao, Z., Wang, J., Tian, H.: Double-layer Fano resonance photonic-crystal-slab-based sensor for label-free detection of different size analytes. JOSA B 36, 215–222 (2019)

    Article  ADS  Google Scholar 

  • Wen, K., Yan, L., Pan, W., Luo, B., Guo, Z., Guo, Y., Luo, X.: Design of plasmonic comb-like filters using loop-based resonators. Plasmonics 8, 1017–1022 (2013)

    Article  Google Scholar 

  • Wen, K., et al.: Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2015)

    Article  Google Scholar 

  • Wu, C., Soleimani, M.: Frequency difference EIT with localization: a potential medical imaging tool during cancer treatment. IEEE Access 7, 21870–21878 (2019)

    Article  Google Scholar 

  • Xia, S.X., Zhai, X., Wang, L.L., Wen, S.C.: Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Res. 6, 692–702 (2018)

    Article  Google Scholar 

  • Yan, X., Yang, M., Zhang, Z., Liang, L., Wei, D., Wang, M., Zhang, M., Wang, T., Liu, L., Xie, J., Yao, J.: The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 126, 485–492 (2019)

    Article  Google Scholar 

  • Zarrabi, F.B., Hekmati, R., Bazgir, M., Ebrahimi, S.: Nanoparticle using parallel split rings and implementation of chain for creating Fano resonance with polarization independence for energy harvesting in mid-infrared. Opt. Quant. Electron. 50, 452 (2018)

    Article  Google Scholar 

  • Zhang, Z.S., Yang, Z.J., Li, J.B., Hao, Z.H., Wang, Q.Q.: Plasmonic interferences in two-dimensional stacked double-disk array. Appl. Phys. Lett. 98, 173111 (2011)

    Article  ADS  Google Scholar 

  • Zhang, X., Wu, Z., Liu, F., Fu, Q., Chen, X., Xu, J., Zhang, Z., Huang, Y., Tang, Y., Guo, T., Albert, J.: Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings. Biomed. Opt. Express 9, 1735–1744 (2018)

    Article  Google Scholar 

  • Zhu, L., Dong, L., Guo, J., Meng, F.Y., He, X.J., Zhao, C.H., Wu, Q.: Polarization conversion based on Mie-type electromagnetically induced transparency (EIT) effect in all-dielectric metasurface. Plasmonics 13, 1971–1976 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rakhshani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshani, M.R. Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt Quant Electron 51, 287 (2019). https://doi.org/10.1007/s11082-019-2007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2007-5

Keywords

Navigation