Skip to main content
Log in

The nano loop antenna with Fano resonance and symmetrical formation and reconfigurable characteristic for bio-sensing application

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The nanoantenna with Fano response is important for solar cell and bio-sensing application because of the more electric field enhancement. In this paper, we have presented a new structure based on two parallel nano loops and for achieving the Fano response; we have combined this structure with nano-sphere arrays which make a coupling between two nano loops. The Interaction between these nanoparticles is made bright and dark mode and Fano responses. To improve the electric field in this structure, we have implemented a multi-layer graphene under the nanoparticle. We show that by altering the chemical potential from 0.2 to 0.8 eV the maximum electric field has increased more than 20% for 0.6 eV in comparison to the case for 0.2 eV. We have studied the parameters effect on resonances. In addition, the presented antenna is used for biomaterial and we have compared the bare and coated structures which can consider as a figure of merit factor for optical sensing and imaging. Here, we have utilized the graphene layer with the thickness of 2 nm under the nanoparticle as multi-layer graphene. The structure is simulated based on the FIT method by the CST and for the substrate, we are selected SiO2 with the thickness of 80 nm which is a normal substrate for graphene deposition and the Palik mode is considered for gold parts. As a result of the fact, the graphene can be considered for controlling the electric field and the optical nanoantenna for bio-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadivand, A., Pala, N.: Multiple coil-type Fano resonances in all-dielectric antisymmetric quadrumers. Opt. Quantum Electron. 47(7), 2055–2064 (2015a)

    Article  Google Scholar 

  • Ahmadivand, A., Pala, N.: Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum. JOSA A 32(2), 204–212 (2015b)

    Article  ADS  Google Scholar 

  • Ahmadivand, A., Golmohammadi, S., Karabiyik, M., Pala, N.: Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing. IEEE Sens. J 15(3), 1588–1594 (2015a)

    Article  Google Scholar 

  • Ahmadivand, A., Sinha, R., Pala, N.: Hybridized plasmon resonant modes in molecular metallodielectric quad-triangles nanoantenna. Opt. Commun. 355, 103–108 (2015b)

    Article  ADS  Google Scholar 

  • Alonso-Gonzalez, P., Schnell, M., Sarriugarte, P., Sobhani, H., Wu, C., Arju, N., Khanikaev, A., et al.: Real-space mapping of Fano interference in plasmonic metamolecules. Nano Lett. 11(9), 3922–3926 (2011)

    Article  ADS  Google Scholar 

  • Barnard, E.S., White, J.S., Chandran, A., Brongersma, M.L.: Spectral properties of plasmonic resonator antennas. Opt. Express 16(21), 16529–16537 (2008)

    Article  ADS  Google Scholar 

  • Bavir, M., Fattah, A.: An investigation and simulation of the graphene performance in dye-sensitized solar cell. Opt. Quantum Electron. 48(12), 559 (2016)

    Article  Google Scholar 

  • Cala’Lesina, A., Ramunno, L., Berini, P.: Dual-polarization plasmonic metasurface for nonlinear optics. Opt. Lett. 40(12), 2874–2877 (2015)

    Article  ADS  Google Scholar 

  • Cetin, A.E., Altug, H.: Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11), 9989–9995 (2012)

    Article  Google Scholar 

  • Cetin, A.E., Turkmen, M., Aksu, S., Etezadi, D., Altug, H.: Multi-resonant compact nanoaperture with accessible large nearfields. Appl. Phys. B 118(1), 29–38 (2015)

    Article  ADS  Google Scholar 

  • Cox, J.D., Garcia de Abajo, F.J.: Plasmon-enhanced nonlinear wave mixing in nanostructured graphene. ACS Photonics 2(2), 306–312 (2015)

    Article  Google Scholar 

  • Dragoman, M., Dragoman, D.: Plasmonics: applications to nanoscale terahertz and optical devices. Prog. Quantum Electron. 32(1), 1–41 (2008)

    Article  ADS  Google Scholar 

  • Hadadi, T., Naser-Moghadasi, M., Arezoomand, A.S., Zarrabi, F.B.: Sub wavelength plasmonic nano-antenna with modified ring structure for multi resonance application and circular polarization. Opt. Quantum Electron. 48(2), 79 (2016)

    Article  Google Scholar 

  • Hopkins, B., Filonov, D.S., Miroshnichenko, A.E., Monticone, F., Alù, A., Kivshar, Y.S.: Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances. ACS Photonics 2(6), 724–729 (2015)

    Article  Google Scholar 

  • Hosseinbeig, A., Pirooj, A., Zarrabi, F.B.: A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J. Magn. Magn. Mater. 423, 203–207 (2017)

    Article  ADS  Google Scholar 

  • Jahangiri, P., Zarrabi, F.B., Naser-Moghadasi, M., Arezoomand, A.S., Heydari, S.: Hollow plasmonic high Q-factor absorber for bio-sensing in mid-infrared application. Opt. Commun. 394, 80–85 (2017)

    Article  ADS  Google Scholar 

  • Lim, W.X., Han, S., Gupta, M., MacDonald, K.F., Singh, R.: Near-infrared linewidth narrowing in plasmonic Fano-resonant metamaterials via tuning of multipole contributions. Appl. Phys. Lett. 111(6), 061104 (2017)

    Article  ADS  Google Scholar 

  • Liu, S.-D., Leong, E.S.P., Li, G.-C., Hou, Y., Deng, J., Teng, J.H., Ong, H.C., Lei, D.Y.: Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano 10(1), 1442–1453 (2016)

    Article  Google Scholar 

  • Mcleod, A., Vernon, K.C., Rider, A.E., Ostrikov, K.: Optical coupling of gold nanoparticles on vertical graphenes to maximize SERS response. Opt. Lett. 39(8), 2334–2337 (2014)

    Article  ADS  Google Scholar 

  • Mutlu, M., Akosman, A.E., Serebryannikov, A.E., Ozbay, E.: Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators. Opt. Lett. 36(9), 1653–1655 (2011)

    Article  ADS  Google Scholar 

  • Naser-Moghadasi, M., Zarrabi, F.B., Pandesh, S., Rajabloo, H., Bazgir, M.: Optical FANO resonance with polarization independence with novel nano-antenna. Opt. Quant. Electron. 48(4), 266 (2016)

    Article  Google Scholar 

  • Nooshnab, V., Golmohammadi, S.: Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters. Opt. Commun. 382, 354–360 (2017)

    Article  ADS  Google Scholar 

  • Oubre, C., Nordlander, P.: Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 108(46), 17740–17747 (2004)

    Article  Google Scholar 

  • Parvin, A., Laleabadi, H., Zarrabi, F.B.: Perpendicular bowtie and graphene load with Fano resonance for mid infrared application. Opt. Quant. Electron. 49(1), 24 (2017)

    Article  Google Scholar 

  • Polman, A.: Plasmonics applied. Science 322(5903), 868–869 (2008)

    Article  Google Scholar 

  • Riazimehr, S., Kataria, S., Bornemann, R., Haring-Bolivar, P., Ruiz, F.J.G., Engström, O., Godoy, A., Lemme, M.C.: High photocurrent in gated graphene–silicon hybrid photodiodes. ACS Photonics 4, 1506–1514 (2017)

    Article  Google Scholar 

  • Schedin, F., Lidorikis, E., Lombardo, A., Kravets, V.G., Geim, A.K., Grigorenko, A.N., Novoselov, K.S., Ferrari, A.C.: Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4(10), 5617–5626 (2010)

    Article  Google Scholar 

  • Seyedsharbaty, M.M., Sadeghzadeh, R.A.: Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quantum Electron. 49(6), 221 (2017)

    Article  Google Scholar 

  • Srivastava, Y.K., Singh, R.: Impact of conductivity on Lorentzian and Fano resonant high-Q THz metamaterials: superconductor, metal and perfect electric conductor. J. Appl. Phys. 122(18), 183104 (2017)

    Article  ADS  Google Scholar 

  • Srivastava, Y.K., Cong, L., Singh, R.: Dual-surface flexible THz Fano metasensor. Appl. Phys. Lett. 111(20), 201101 (2017)

    Article  ADS  Google Scholar 

  • Trügler, A., Tinguely, J.C., Jakopic, G., Hohenester, U., Krenn, J.R., Hohenau, A.: Near-field and SERS enhancement from rough plasmonic nanoparticles. Phys. Rev. B 89(16), 165409 (2014)

    Article  ADS  Google Scholar 

  • Weber, W.H., Ford, G.W.: Propagation of optical excitations by dipolar interactions in metal nanoparticle chains. Phys. Rev. B 70(12), 125429 (2004)

    Article  ADS  Google Scholar 

  • Wegener, M., García-Pomar, J.L., Soukoulis, C.M., Meinzer, N., Ruther, M., Linden, S.: Toy model for plasmonic metamaterial resonances coupled to two-level system gain. Opt. Express 16(24), 19785–19798 (2008)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Moghadasi, M.N.: Investigated the Fano resonance in the nano ring arrangement. Opt.-Int. J. Light Electron Opt. 138, 80–86 (2017)

    Article  Google Scholar 

  • Zarrabi, F.B., Naser-Moghadasi, M.: Plasmonic split ring resonator with energy enhancement for the application of bio-sensing and energy harvesting based on the second harmonic generation and multi Fano resonance. J. Alloys Compd. 706, 568–575 (2017)

    Article  Google Scholar 

  • Zarrabi, F.B., Mansouri, Z., Ahmadian, R., Kuhestani, H., Rahimi, M.: Nanoscale plasmonic antenna difference formation implementation effect on field enhancement. Opt.-Int. J. Light Electron Opt. 126(22), 3424–3428 (2015)

    Article  Google Scholar 

  • Zarrabi, F.B., Mohaghegh, M., Bazgir, M., Arezoomand, A.S.: Graphene-Gold Nano-ring antenna for Dual-resonance optical application. Opt. Mater. 51, 98–103 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Bazgir, M., Ebrahimi, S., Saee Arezoomand, A.: Fano resonance for UI nano-array independent to the polarization providing bio-sensing applications. J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Naser-Moghadasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahedian, M., Naser-Moghadasi, M. The nano loop antenna with Fano resonance and symmetrical formation and reconfigurable characteristic for bio-sensing application. Opt Quant Electron 50, 178 (2018). https://doi.org/10.1007/s11082-018-1449-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1449-5

Keywords

Navigation