Skip to main content

Advertisement

Log in

Nanoparticle using parallel split rings and implementation of chain for creating Fano resonance with polarization independence for energy harvesting in mid-infrared

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In optical devices, the polarization of the incident wave affects the Nano particle characteristics. Therefore, designing a polarization-independent device is significant in the process of designing optical structures. On the other hand, the concept of Fano resonance and dark mode has been utilized for achieving more energy enhancement. In this paper, we have developed a symmetrical Nano antenna by employing Fano resonance, which is independent of the incident wave polarization. The proposed Nano antenna is modified in mid infrared regime for biosensing and energy harvesting applications. The designed metamaterial antenna is made by Nano split ring resonators with etched capacitive gaps, which are utilized for concentrating energy. The introduced Nano antenna has a bright and dark mode with a weak enhancement of electric field. The effect of the incident wave polarization is investigated at wave incident angles between 0° and 45° to illustrate the independency of the polarization due to the symmetrical shape of the Nano antenna. In order to trigger the dark mode and enhance the electric field, a Nano chain is incorporated in the final structure. This arrangement has led to increasing of electric field drastically. Furthermore, the figure of merit has been calculated as an advantageous factor in sensing the surrounding materials with various refractive indices. Our findings illustrated that the chain arrangement has caused a peak in the linear form of the extinction cross section of the Nano antenna. This in turn has resulted in the appearance of Fano resonance with no impact on the resonance frequency that has been originally adjusted by capacitive gaps and inductive strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadivand, A., Golmohammadi, S., Pala, N.: Fano resonances in plasmonic aluminum nanoparticle clusters for precise gas detection: ultra-sensitivity to the minor environmental refractive index perturbations. Photon. Nanostruct. Fundam. Appl. 13, 97–105 (2015)

    Article  ADS  Google Scholar 

  • Ahmadivand, A., Sinha, R., Kaya, S., Pala, N.: A molecular plasmonic Fano-router: using hotspots in a single-stone ring-like structure. Opt. Commun. 367, 123–129 (2016)

    Article  ADS  Google Scholar 

  • Austin, L.A., Kang, B., El-Sayed, M.A.: Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review. Nano Today 10(5), 542–558 (2015)

    Article  Google Scholar 

  • Aydin, K., Li, Z., Sahin, L., Ozbay, E.: Negative phase advance in polarization independent, multi-layer negative-index metamaterials. Opt. Express 16(12), 8835–8844 (2008)

    Article  ADS  Google Scholar 

  • Bajestani, S.Mohsen, Zadeh, R., Shahabadi, M., Talebi, N.: Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique. JOSA B 28(4), 937–943 (2011)

    Article  ADS  Google Scholar 

  • Barrow, S.J., Funston, A.M., Gómez, D.E., Davis, T.J., Mulvaney, P.: Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer. Nano Lett. 11(10), 4180–4187 (2011)

    Article  ADS  Google Scholar 

  • Bazgir, M., Novin, S.N., Zarrabi, F.B., Heydari, S., Arezoomand, A.S.: A novel plasmonic elliptical nanocluster and investigating Fano response in π-and T-shaped arrays. Electromagnetics 38(4), 207–216 (2018)

    Article  Google Scholar 

  • Cetin, A.E., Altug, H.: Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11), 9989–9995 (2012)

    Article  Google Scholar 

  • Cetin, A.E., Turkmen, M., Aksu, S., Altug, H.: Nanoparticle-based metamaterials as multiband plasmonic resonator antennas. IEEE Trans. Nanotechnol. 11(1), 208–212 (2012)

    Article  ADS  Google Scholar 

  • Çetin, A.E., Artar, A., Turkmen, M., Yanik, A.A., Altug, H.: Plasmon induced transparency in cascaded π-shaped metamaterials. Opt. Express 19(23), 22607–22618 (2011)

    Article  ADS  Google Scholar 

  • Chen, C.-Y., Shich-Chuan, W., Yen, T.-J.: Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Appl. Phys. Lett. 93(3), 034110 (2008)

    Article  ADS  Google Scholar 

  • Chong, K.E., Hopkins, B., Staude, I., Miroshnichenko, A.E., Dominguez, J., Decker, M., Neshev, D.N., Brener, I., Kivshar, Y.S.: Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10(10), 1985–1990 (2014)

    Article  Google Scholar 

  • Fan, J.A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N.J., Manoharan, V.N., Nordlander, P., Shvets, G., Capasso, F.: Self-assembled plasmonic nanoparticle clusters. Science 328(5982), 1135–1138 (2010)

    Article  ADS  Google Scholar 

  • Farmani, A., Mir, A., Bazgir, M., Zarrabi, F.B.: Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study. Physica E 104, 233–240 (2018)

    Article  ADS  Google Scholar 

  • Giloan, M., Astilean, S.: Designing polarization insensitive negative index metamaterial for operation in near infrared. Opt. Commun. 285(8), 2195–2200 (2012)

    Article  ADS  Google Scholar 

  • Giner-Casares, J.J., Liz-Marzán, L.M.: Plasmonic nanoparticles in 2D for biological applications: toward active multipurpose platforms. Nano Today 9(3), 365–377 (2014)

    Article  Google Scholar 

  • Heydari, S., Bazgir, M., Zarrabi, F.B., Gandji, N.P., Rastan, I.: Novel optical polarizer design based on metasurface nano aperture for biological sensing in mid-infrared regime. Opt. Quant. Electron. 49(2), 83 (2017a)

    Article  Google Scholar 

  • Heydari, S., Rastan, I., Parvin, A., Pirooj, A., Zarrabi, F.B.: Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application. Phys. Lett. A 381(3), 140–144 (2017b)

    Article  ADS  Google Scholar 

  • Kelf, T.A., Sugawara, Y., Baumberg, J.J., Abdelsalam, M., Bartlett, P.N.: Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. Phys. Rev. Lett. 95(11), 116802 (2005)

    Article  ADS  Google Scholar 

  • Keyser, U.F.: Enhancing nanopore sensing with DNA nanotechnology. Nat. Nanotechnol. 11(2), 106–108 (2016)

    Article  ADS  Google Scholar 

  • Lahiri, B., McMeekin, S.G., Richard, M., Johnson, N.P.: Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs). Opt. Express 21(8), 9343–9352 (2013)

    Article  ADS  Google Scholar 

  • Liu, S.-D., Leong, E.S.P., Li, G.-C., Hou, Y., Deng, J., Teng, J.H., Ong, H.C., Lei, D.Y.: Polarization-independent multiple fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano 10(1), 1442–1453 (2016)

    Article  Google Scholar 

  • Lukyanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Article  ADS  Google Scholar 

  • Mousavi, S.H., Kholmanov, I., Alici, K.B., Purtseladze, D., Arju, N., Tatar, K., Fozdar, D.Y., et al.: Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared. Nano Lett. 13(3), 1111–1117 (2013)

    Article  ADS  Google Scholar 

  • Nouri-Novin, S., Zarrabi, F.B., Eskandari, A.-R., Naser-Moghadasi, M.: Design of a plasmonic absorber based on the nonlinear arrangement of nanodisk for surface cloak. Opt. Commun. 420, 194–199 (2018)

    Article  ADS  Google Scholar 

  • Nouri-Novin, S., Sadatgol, M., Zarrabi, F.B., Bazgir, M.: A hollow rectangular plasmonic absorber for nano biosensing applications. Optik 176, 14–23 (2019)

    Article  ADS  Google Scholar 

  • Panaro, S., Nazir, A., Zaccaria, R.P., Razzari, L., Liberale, C., De Angelis, F., Toma, A.: Plasmonic moon: a Fano-like approach for squeezing the magnetic field in the infrared. Nano Lett. 15(9), 6128–6134 (2015)

    Article  ADS  Google Scholar 

  • Rahmani, M., Luk’yanchuk, B., Hong, M.: Fano resonance in novel plasmonic nanostructures. Laser Photon. Rev. 7(3), 329–349 (2013)

    Article  ADS  Google Scholar 

  • Ross, M.B., Schatz, G.C.: Radiative effects in plasmonic aluminum and silver nanospheres and nanorods. J. Phys. D Appl. Phys. 48(18), 184004 (2014)

    Article  ADS  Google Scholar 

  • Rufangura, P., Sabah, C.: Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application. J. Alloys Compd. 680, 473–479 (2016)

    Article  Google Scholar 

  • Sadatgol, M., Özdemir, Ş.K., Yang, L., Güney, D.: Plasmon injection to compensate and control losses in negative index metamaterials. Phys. Rev. Lett. 115(3), 035502 (2015)

    Article  ADS  Google Scholar 

  • Sendur, K., Kosar, A., Menguc, M.P.: “Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack. Appl. Phys. A 103(3), 703–707 (2011)

    Article  ADS  Google Scholar 

  • Shadrivov, I.V., Zharov, A.A., Kivshar, Y.S.: Second-harmonic generation in nonlinear left-handed metamaterials. JOSA B 23(3), 529–534 (2006)

    Article  ADS  Google Scholar 

  • Thyagarajan, K., Butet, J., Martin, O.J.: Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett. 13(4), 1847–1851 (2013)

    Article  ADS  Google Scholar 

  • Turkmen, M., Aksu, S., Çetin, A.E., Yanik, A.A., Altug, H.: Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Opt. Express 19(8), 7921–7928 (2011)

    Article  ADS  Google Scholar 

  • Verellen, N., Van Dorpe, P., Vercruysse, D., Vandenbosch, G.A.E., Moshchalkov, V.V.: Dark and bright localized surface plasmons in nanocrosses. Opt. Express 19(12), 11034–11051 (2011)

    Article  ADS  Google Scholar 

  • Wang, B., Xie, Z., Feng, S., Zhang, B., Zhang, Y.: Ultrahigh Q-factor and figure of merit Fano metamaterial based on dark ring magnetic mode. Opt. Commun. 335, 60–64 (2015)

    Article  ADS  Google Scholar 

  • Wang, B.-X., Xie, Q., Dong, G., Huang, W.-Q.: Multiple-band light absorber via combining the fundamental mode and multiple splitting modes of the 3-order response of metamaterial resonator. J. Phys. D Appl. Phys. 50(48), 485108 (2017)

    Article  Google Scholar 

  • Willingham, B., Link, S.: Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Opt. Express 19(7), 6450–6461 (2011)

    Article  ADS  Google Scholar 

  • Wu, C., Khanikaev, A.B., Adato, R., Arju, N., Yanik, A.A., Altug, H., Shvets, G.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11(1), 69–75 (2012)

    Article  ADS  Google Scholar 

  • Xu, H., Li, H., Xiao, G.: Plasmonic resonance in planer split ring trimer. Opt. Commun. 332, 144–148 (2014)

    Article  ADS  Google Scholar 

  • Xu, G., Cao, M., Liu, C., Sun, J., Pan, T.: Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Opt. Commun. 366, 112–118 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Naser-Moghadasi, M., Heydari, S., Maleki, M., Arezomand, A.S.: Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt. Commun. 371, 34–39 (2016)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Bazgir, M., Ebrahimi, S., Arezoomand, A.S.: Fano resonance for UI nano-array independent to the polarization providing bio-sensing applications. J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrabi, F.B., Hekmati, R., Bazgir, M. et al. Nanoparticle using parallel split rings and implementation of chain for creating Fano resonance with polarization independence for energy harvesting in mid-infrared. Opt Quant Electron 50, 452 (2018). https://doi.org/10.1007/s11082-018-1709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1709-4

Keywords

Navigation