Skip to main content
Log in

Plasmonic Metal-Insulator-Metal (MIM) Refractive Index Sensor for Glucose Level Monitoring

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, we introduce a novel H-shaped plasmonic refractive index (RI) sensor coupled with a bus waveguide. The sensor is designed to interact with a straight metal-insulator-metal (MIM) waveguide configuration. To analyze the proposed structure, the finite element method (FEM) is employed, allowing for a comprehensive numerical investigation. The primary function of this sensor is to detect changes in RI by monitoring alterations in the resonant wavelength. The sensing mechanism involves the interaction of light with the plasmonic structure, and any variations in the RI of the surrounding medium induce changes in the resonant wavelength of the sensor. This phenomenon is crucial for applications such as biosensing and chemical analysis. To optimize the sensor’s performance, the authors conducted a thorough process of geometric parameter optimization. Consequently, the recorded maximum sensitivity of the sensor, reported as 1960 nm/RIU for mode 2 and 1420 nm/RIU for mode 1, underscores its exceptional capability to discern minute quantities of molecules, showcasing a heightened sensitivity that sets it apart in molecular detection applications. Furthermore, we extend the applicability of their proposed sensor by numerically analyzing its performance in measuring the glucose content of blood. This highlights the versatility of the sensor, showcasing its potential for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No data were generated or analyzed in the presented research.

References

  1. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Express 13(17):6645–6650

    Article  PubMed  Google Scholar 

  2. Rahad R, Rakib A, Mahadi MK, Faruque MO (2023) Fuel classification and adulteration detection using a highly sensitive plasmonic sensor. Sens Bio-Sens Res 100560

  3. Rahad R, Rakib A, Haque MA, Sharar SS, Sagor RH (2023) Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: an exploration of biological biomarkers. Results Phys 106478

  4. Pattnaik P (2005) Surface plasmon resonance: applications in understanding receptor-ligand interaction. Appl Biochem Biotechnol 126:79–92

    Article  CAS  PubMed  Google Scholar 

  5. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  6. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen T (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92(10):107401

    Article  CAS  PubMed  Google Scholar 

  7. Mehta KK, Ram RJ (2017) Precise and diffraction-limited waveguide-to-free-space focusing gratings. Sci Rep 7(1):2019

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408(3–4):131–314

    Article  CAS  Google Scholar 

  9. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27

    Article  CAS  Google Scholar 

  10. Park J, Kim K-Y, Lee I-M, Na H, Lee S-Y, Lee B (2010) Trapping light in plasmonic waveguides. Opt Express 18(2):598–623

    Article  CAS  PubMed  Google Scholar 

  11. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90(18):181102

    Article  Google Scholar 

  12. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  13. Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  PubMed  Google Scholar 

  14. Butt M, Khonina S, Kazanskiy N (2018) Plasmonic refractive index sensor based on MIM square ring resonator. In: 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1–4. IEEE

  15. Wang L, Zeng Y-P, Wang Z-Y, Xia X-P, Liang Q-Q (2018) A refractive index sensor based on an analogy T shaped metal-insulator-metal waveguide. Optik 172:1199–1204

    Article  CAS  Google Scholar 

  16. Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S (2017) Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17(4):784

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haque MA, Rahad R, Rakib A, Sharar SS, Sagor RH (2023) Plasmonic sensor for rapid detection of water adulteration in honey and quantitative measurement of lactose concentration in solution. Results Phys 51:106733

    Article  Google Scholar 

  18. Zhou L, Zhang N, Hsu CC, Singer M, Zeng X, Li Y, Song H, Jornet J, Wu Y, Gan Q (2023) Plasmonic rainbow chip for super-resolution displacement spectrometer and surface biosensor. In: 2023 IEEE Photonics Conference (IPC), pp. 1–2. IEEE

  19. Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, Wang W, Cui L, Yu L, Duan G, Zhao Y, Xiao J (2015) Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system. Plasmonics 10:721–727

    Article  CAS  Google Scholar 

  21. Sharma P, Kumar VD (2018) All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photonics Technol Lett 30(10):959–962

    Article  CAS  Google Scholar 

  22. Shibayama J, Kawai H, Yamauchi J, Nakano H (2019) Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt Commun 452:360–365

    Article  CAS  Google Scholar 

  23. Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol Lett 19(2):91–93

    Article  Google Scholar 

  24. Rahmatiyar M, Afsahi M, Danaie M (2020) Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15:2169–2176

    Article  CAS  Google Scholar 

  25. Bazgir M, Jalalpour M, Zarrabi FB, Arezoomand AS (2020) Design of an optical switch and sensor based on a MIM coupled waveguide using a DNA composite. J Electron Mater 49:2173–2178

    Article  CAS  Google Scholar 

  26. Jin X-P, Huang X-G, Tao J, Lin X-S, Zhang Q (2010) A novel nanometeric plasmonic refractive index sensor. IEEE Trans Nanotechnol 9(2):134–137

    Article  Google Scholar 

  27. Butt M, Khonina S, Kazanskiy N (2019) Plasmonic refractive index sensor based on metal-insulator-metal waveguides with high sensitivity. J Mod Opt 66(9):1038–1043

    Article  CAS  Google Scholar 

  28. Rakib A, Siddique ATB, Sakib MS, Faruque MO, Sagor RH (2023) A numerical analysis of a highly sensitive hexagonal plasmonic refractive index sensor. Opt Commun 530:129205

    Article  CAS  Google Scholar 

  29. Rakhshani MR, Tavousi A, Mansouri-Birjandi MA (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57(27):7798–7804

    Article  CAS  PubMed  Google Scholar 

  30. Rakib A, Rahad R, Faruque MO, Sagor RH (2023) ZRN-based plasmonic sensor: a promising alternative to traditional noble metal-based sensors for CMOS-compatible and tunable optical properties. Opt Express 31(15):25280–25297

    Article  CAS  PubMed  Google Scholar 

  31. Haque MA, Rahad R, Faruque MO, Mobassir MS, Sagor RH (2023) Numerical analysis of a metal-insulator-metal waveguide-integrated magnetic field sensor operating at sub-wavelength scales. Sens Bio-Sens Res 100618

  32. Danaie M, Shahzadi A (2019) Design of a high-resolution metal-insulator-metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6):1453–1465

    Article  CAS  Google Scholar 

  33. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  PubMed  Google Scholar 

  34. Jun Z, Xu W, Xu Z, Fu D, Song S, Wei D (2017) Surface plasmon polariton mode in the metal-insulator-metal waveguide. Optik 134:187–193

    Article  Google Scholar 

  35. Kazanskiy N, Khonina S, Butt M (2020) Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Physica E 117:113798

    Article  CAS  Google Scholar 

  36. Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167

    Article  CAS  Google Scholar 

  37. Zhang Z, Luo L, Xue C, Zhang W, Yan S (2016) Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5):642

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cohen MX (2019) A better way to define and describe Morlet wavelets for time-frequency analysis. Neuroimage 199:81–86

    Article  PubMed  Google Scholar 

  39. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028

    Article  PubMed  Google Scholar 

  40. Yan S, Zhang M, Zhao X, Zhang Y, Wang J, Jin W (2017) Refractive index sensor based on a metal-insulator-metal waveguide coupled with a symmetric structure. Sensors 17(12):2879

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, Qi Y, Zhou P, Gong H, Hu B, Yan C (2018) Refractive index sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sensors 8:367–374

    Article  CAS  Google Scholar 

  42. Jankovic N, Cselyuszka N (2018) Multiple Fano-like MIM plasmonic structure based on triangular resonator for refractive index sensing. Sensors 18(1):287

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y (2018) Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19(4):791

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li Z, Wen K, Chen L, Lei L, Zhou J, Zhou D, Fang Y, Wu B (2019) Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure. Appl Opt 58(18):4878–4883

    Article  CAS  PubMed  Google Scholar 

  46. Yang Q, Liu X, Guo F, Bai H, Zhang B, Li X, Tan Y, Zhang Z (2020) Multiple Fano resonance in MIM waveguide system with cross-shaped cavity. Optik 220:165163

    Article  CAS  Google Scholar 

  47. Fang Y, Wen K, Li Z, Wu B, Guo Z (2020) Plasmonic refractive index sensor with multi-channel Fano resonances based on MIM waveguides. Mod Phys Lett B 34(16):2050173

    Article  CAS  Google Scholar 

  48. Al Mahmud R, Faruque MO, Sagor RH (2021) Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity. Plasmonics 16:873–880

    Article  CAS  Google Scholar 

  49. Chou Chau YF, Ming TY, Chou Chao CT, Thotagamuge R, Kooh MRR, Huang HJ, Lim CM (2021) Chiang HP (2021) Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep 11(1):18515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li B, Sun H, Zhang H, Li Y, Zang J, Cao X, Zhu X, Zhao X, Zhang Z (2022) Refractive index sensor based on the Fano resonance in metal-insulator-metal waveguides coupled with a whistle-shaped cavity. Micromachines 13(10):1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rohimah S, Tian H, Wang J, Chen J, Li J, Liu X, Cui J, Xu Q, Hao Y (2022) Fano resonance in the plasmonic structure of MIM waveguide with r-shaped resonator for refractive index sensor. Plasmonics 17(4):1681–1689

    Article  CAS  Google Scholar 

  52. Butt MA, Khonina SN, Kazanskiy NL (2022) Simple and improved plasmonic sensor configuration established on MIM waveguide for enhanced sensing performance. Plasmonics 17(3):1305–1314

    Article  CAS  Google Scholar 

  53. Butt M, Kazanskiy N, Khonina S (2023) Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors. Measurement 211:112601

    Article  Google Scholar 

  54. Mohamed ZEA, Taya SA, Almawgani AH, Hindi AT (2023) Fano resonance based on coupling between nanoring resonator and MIM waveguide for refractive index sensor. Plasmonics 1–9

  55. Chen J-H, Wang L, Chen J-X, Zeng Y-P, Liang Q-Q, Xia X-P (2023) A refractive index sensor based on the MIM waveguide with a semi-elliptical and a rectangular ring resonant cavity. Mod Phys Lett B 37(30):2350141

    Article  CAS  Google Scholar 

  56. Liang X, Zhang Q, Jiang H (2006) Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light. Appl Opt 45(32):8360–8365

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design, data collection, analysis and interpretation of results, draft manuscript preparation: Rizwanur Rahad; study conception and design, analysis: Ahsan Ali and Mahian Frabi; interpretation of results, manuscript preparation: Md. Khaled Hasan Pias; Analysis and interpretation of results, manuscript preparation: Md. Asadul Islam, and Abdullah Al Fahim

Corresponding author

Correspondence to Rizwanur Rahad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahad, R., Ali, A., Pias, M.K.H. et al. Plasmonic Metal-Insulator-Metal (MIM) Refractive Index Sensor for Glucose Level Monitoring. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02201-y

Keywords

Navigation