Skip to main content
Log in

Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on Darboux transformation, we generate breather solutions sitting on zero background via module resonance for complex modified KdV equation. Then, some novel soliton molecules, breather molecules and breather-soliton molecules are obtained theoretically by module resonance and velocity resonance. Further, we study the higher-order breather-positons with zero background on the basis of degenerate Darboux transformation and module resonance for the first time. We discuss the dynamics of higher-order breather-positons in detail and propose related propositions. Finally, we find new elastic interactions between smooth positons and breather-positons by means of degenerate Darboux transformation and partial module resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lakomy, K., Nath, R., Santos, L.: Spontaneous crystallization and filamentation of solitons in dipolar condensates. Phys. Rev. A 85, 033618 (2012)

    Article  Google Scholar 

  2. Herink, G., Kurtz, F., Jalali, B., Solli, D.R., Ropers, C.: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017)

    Article  Google Scholar 

  3. Liu, X.M., Yao, X.K., Cui, Y.D.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)

    Article  Google Scholar 

  4. Lou, S.Y.: Soliton molecules and asymmetric solitons in fluid systems via velocity resonance. arXiv:1909.03399 [nlin .SI] (2019)

  5. Zhang, Z., Yang, S.X., Li, B.: Soliton molecules, asymmetric solitons and hybrid solutions for (\(2+1\))-dimensional fifth-order KdV equation. Chin. Phys. Lett. 36, 120501 (2019)

    Article  Google Scholar 

  6. Yang, S.X., Zhang, Z., Li, B.: Soliton molecules and some novel types of hybrid solutions to (\(2+1\))-dimensional variable-coefficient Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Adv. Math. Phys. 2020, 2670710 (2020)

    MathSciNet  Google Scholar 

  7. Dong, J.J., Li, B., Yuen, M.: Soliton molecules and mixed solutions of the (\(2+1\))-dimensional bidirectional Sawada–Kotera equation. Commun. Theor. Phys. 72, 025002 (2020)

    Article  Google Scholar 

  8. Peng, J., Boscolo, S., Zhao, Z., Zeng, H.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, eaax1110 (2019)

    Article  Google Scholar 

  9. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  10. Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    Article  MathSciNet  Google Scholar 

  11. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Article  Google Scholar 

  12. Beutler, R., Stahlhofen, A.A., Matveev, V.B.: What do solitons, breathers and positons have in common? Phys. Scr. 50, 9–20 (1994)

    Article  Google Scholar 

  13. Matveev, V.B.: Positons: A New Concept in the Theory of Nonlinear Waves—Nonlinear Coherent Structures in Physics and Biology. Springer, Berlin (1994)

    Google Scholar 

  14. Matveev, V.B.: Positons: slowly decreasing analogues of solitons. Theor. Math. Phys. 131, 483–497 (2002)

    Article  MathSciNet  Google Scholar 

  15. Stahlhofen, A.A., Matveev, V.B.: Positons for the Toda lattice and related spectral problems. J. Phys. A 28, 1957–1965 (1995)

    Article  MathSciNet  Google Scholar 

  16. Hu, H.C., Liu, Y.: New positon, negaton and complexiton solutions for the Hirota–Satsuma coupled KdV system. Phys. Lett. A 372, 5795–5798 (2008)

    Article  MathSciNet  Google Scholar 

  17. Andreev, V.A., Brezhnev, Y.V.: Darboux transformation, positons and general superposition formula for the sine-Gordon equation. Phys. Lett. A 207, 58–66 (1995)

    Article  MathSciNet  Google Scholar 

  18. Wang, L.H., He, J.S., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)

    Article  MathSciNet  Google Scholar 

  19. Qiu, D.Q., Cheng, W.G.: The nth-order degenerate breather solution for the Kundu–Eckhaus equation. Appl. Math. Lett. 98, 13–21 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Wave Random Complex 28, 203–214 (2018)

    Article  MathSciNet  Google Scholar 

  21. Song, W.J., Xu, S.W., Li, M.H., He, J.S.: Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. 97, 2135–2145 (2019)

    Article  Google Scholar 

  22. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  23. Peng, W.Q., Tian, S.F., Zhang, T.T.: Breather waves, high-order rogue waves and their dynamics in the coupled nonlinear Schrödinger equations with alternate signs of nonlinearities. EPL Europhys Lett. 127, 50005 (2019)

    Article  Google Scholar 

  24. Wadati, M.: The exact solution of the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 32, 1681–1687 (1972)

    Article  Google Scholar 

  25. Wadati, M.: The modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 34, 1289–1296 (1973)

    Article  MathSciNet  Google Scholar 

  26. Masataka, I., Hirota, R.: Soliton solutions of a coupled modified KdV equations. J. Phys. Soc. Jpn. 66, 577–588 (1997)

    Article  MathSciNet  Google Scholar 

  27. Fan, E.G.: Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation. Phys. Lett. A. 282, 18–22 (2001)

    Article  MathSciNet  Google Scholar 

  28. Zha, Q.L.: Nth-order rogue wave solutions of the complex modified Korteweg–de Vries equation. Phys. Scr. 87, 065401 (2013)

    Article  Google Scholar 

  29. Rodriguez, R.F., Reyes, J.A., Espinosa-Cerón, A., Fujioka, J., Malomed, B.A.: Standard and embedded solitons in nematic optical fibers. Phys. Rev. E 68, 036606 (2003)

    Article  Google Scholar 

  30. He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdélyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Article  Google Scholar 

  31. Wazwaz, A.M.: A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions. Wave Random Complex 28, 533–543 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wazwaz, A.M.: Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn. 93, 1371–1376 (2018)

    Article  Google Scholar 

  33. Wazwaz, A.M.: Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions. Wave Random Complex (2019). https://doi.org/10.1080/17455030.2019.1631504

    Article  Google Scholar 

  34. Serkin, V.N., Belyaeva, T.L.: Novel conditions for soliton breathers of the complex modified Korteweg–de Vries equation with variable coefficients. Opt. Int. J. Light Electron Opt. 172, 1117–1122 (2018)

    Article  Google Scholar 

  35. Serkin, V.N., Belyaeva, T.L.: Optimal control for soliton breathers of the Lakshmanan–Porsezian–Daniel, Hirota, and cmKdV models. Opt. Int. J. Light Electron Opt. 175, 17–27 (2018)

    Article  Google Scholar 

  36. Serkin, V.N., Belyaeva, T.L.: Novel soliton breathers for the higher-order Ablowitz–Kaup–Newell–Segur hierarchy. Opt. Int. J. Light Electron Opt. 174, 259–265 (2018)

    Article  Google Scholar 

  37. Serkin, V.N., Belyaeva, T.L.: Do N-soliton breathers exist for the Hirota equation models? Opt. Int. J. Light Electron Opt. 173, 44–52 (2018)

    Article  Google Scholar 

  38. Zhang, Y.S., Guo, L.J., He, J.S., Zhou, Z.X.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Z., Yang, X.Y., Li, B.: Soliton molecules and novel smooth positons for the complex modified KdV equation. Appl. Math. Lett. 103, 106168 (2020). https://doi.org/10.1016/j.aml.2019.106168

    Article  MathSciNet  Google Scholar 

  40. Zhang, Z., Yang, X.Y., Li, W.T., Li, B.: Trajectory equation of a lump before and after collision with line, lump, and breather waves for (\(2+1\))-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. B 28, 110201 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 11775121 and K.C. Wong Magna Fund in Ningbo University. The authors would like to express their sincere thanks to Professor S.Y. Lou for his guidance and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Li .

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, X. & Li , B. Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation. Nonlinear Dyn 100, 1551–1557 (2020). https://doi.org/10.1007/s11071-020-05570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05570-1

Keywords

Navigation