Skip to main content
Log in

Binary Darboux transformation, solitons and breathers for a second-order three-wave resonant interaction system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a second-order three-wave interaction system, which belongs to a three-wave resonant interaction hierarchy, is investigated. Based on a known Lax pair, we firstly derive a binary Darboux transformation and the Nth-order analytic solutions with symbolic computation, where N is a positive integer. Behaviors of the one soliton are studied, and then, multi solitons and bound-state solitons on the zero background are investigated. When we select two of the three seed solutions as 0, the Nth-order analytic solutions describe the interactions among the breathers and three kinds of the dark-bright solitons. Moreover, we explore the influence of certain parameters on the interactions among the breathers and three kinds of the dark-bright solitons. With less than two of the three seed solutions selected as 0, the breathers and bound-state breathers are derived via the Nth-order analytic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. The binary DT in the determinant form obtained in this paper, which enables us to obtain the dark solitons, is different from the DT in Ref. [35].

References

  1. Zakharov, V.E., Manakov, S.V.: Resonant interaction of wave packets in nonlinear media. Zh. Eksp. Teor. Fiz. Pisma. Red. 18, 243 (1973)

    Google Scholar 

  2. Kaup, D.J.: The three-wave interaction—a nondispersive phenomenon. Stud. Appl. Math. 55, 9 (1976)

    MathSciNet  Google Scholar 

  3. Kaup, D.J., Reiman, A., Bers, A.: Space-time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium. Rev. Mod. Phys. 51, 275 (1979)

    MathSciNet  Google Scholar 

  4. Ibragimov, E., Struthers, A.: Second-harmonic pulse compression in the soliton regime. Opt. Lett. 21, 1582 (1996)

    Google Scholar 

  5. Conforti, M., Baronio, F., Degasperis, A., Wabnitz, S.: Parametric frequency conversion of short optical pulses controlled by a CW background. Opt. Express 15, 12246 (2007)

    Google Scholar 

  6. Conforti, M., Baronio, F., Degasperis, A., Wabnitz, S.: Inelastic scattering and interactions of three-wave parametric solitons. Phys. Rev. E 74, 065602 (2006)

    Google Scholar 

  7. Degasperis, A., Conforti, M., Baronio, F., Wabnitz, S.: Stable control of pulse speed in parametric three-wave solitons. Phys. Rev. Lett. 97, 093901 (2006)

    Google Scholar 

  8. Ibragimov, E., Struthers, A.: Three-wave soliton interaction of ultrashort pulses in quadratic media. J. Opt. Soc. Am. B Opt. Phys. 14, 1472 (1997)

    Google Scholar 

  9. Obuse, K., Yamada, M.: Three-wave resonant interactions and zonal flows in two-dimensional Rossby-Haurwitz wave turbulence on a rotating sphere. Phys. Rev. Fluids 4, 024601 (2019)

    Google Scholar 

  10. Haudin, F., Cazaubiel, A., Deike, L., Jamin, T., Falcon, E., Berhanu, M.: Experimental study of three-wave interactions among capillary-gravity surface waves. Phys. Rev. E 93, 043110 (2016)

    Google Scholar 

  11. Lamb, K.G.: Tidally generated near-resonant internal wave triads at a shelf break. Geophys. Res. Lett. 34, 18 (2007)

    Google Scholar 

  12. Baronio, F., Conforti, M., De Angelis, C., Degasperis, A., Andreana, M., Couderc, V., BarthBarthélémy, A.: Velocity-locked solitary waves in quadratic media. Phys. Rev. Lett. 104, 113902 (2010)

    Google Scholar 

  13. Ibragimov, E., Struthers, A.A., Kaup, D.J., Khaydarov, J.D., Singer, K.D.: Three-wave interaction solitons in optical parametric amplification. Phys. Rev. E 59, 6122 (1999)

    Google Scholar 

  14. Dodin, I.Y., Fisch, N.J.: Storing, retrieving, and processing optical information by Raman backscattering in plasmas. Phys. Rev. Lett. 88, 165001 (2002)

    Google Scholar 

  15. Sauer, K., Baumgärtel, K., Sydora, R., Winterhalter, D.: Parametric decay of beam-generated Langmuir waves and three-wave interaction in plateau plasmas: implications for type III radiation. J. Geophys. Res. Space Phys. 124, 68 (2019)

    Google Scholar 

  16. Burlak, G., Koshevaya, S., Hayakawa, M., Gutierrez-D, E., Grimalsky, V.: Acousto-optic solitons in fibers. Opt. Rev. 7, 323 (2000)

    Google Scholar 

  17. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)

    Google Scholar 

  18. Zhang, G.Q., Yan, Z.Y., Wen, X.Y.: Three-wave resonant interactions: multi-dark-dark-dark solitons, breathers, rogue waves, and their interactions and dynamics. Physica D 366, 27 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Wang, X., Cao, J.L., Chen, Y.: Higher-order rogue wave solutions of the three-wave resonant interaction equation via the generalized Darboux transformation. Phys. Scr. 90, 105201 (2015)

    Google Scholar 

  20. Xu, J., Fan, E.G.: The three-wave equation on the half-line. Phys. Lett. A 378, 26 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ding, C.C., Gao, Y.T., Yu, X., Liu, F.Y., Wu, X.H.: Three-wave resonant interactions: dark-bright-bright mixed \(N\)- and high-order solitons, breathers, and their structures. Wave. Random Complex (2023, in press). https://doi.org/10.1080/17455030.2021.1976437

  22. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    MATH  Google Scholar 

  24. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

    Google Scholar 

  25. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive water-wave system: similarity reductions, scaling and hetero-Bäcklund transformations. Qual. Theory Dyn. Syst. 22, 17 (2023)

    MATH  Google Scholar 

  26. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: Pfaffian solutions and nonlinear waves of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics. Phys. Fluids 35, 025103 (2023)

    Google Scholar 

  28. Feng, C.H., Tian, B., Yang, D.Y., Gao, X.T.: Lump and hybrid solutions for a (3+1)-dimensional Boussinesq-type equation for the gravity waves over a water surface. Chin. J. Phys. 83, 515 (2023)

    MathSciNet  Google Scholar 

  29. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    MATH  Google Scholar 

  30. Zhou, T.Y., Tian, B., Zhang, C.R., Liu, S.H.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137, 912 (2022)

    Google Scholar 

  31. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818–2824 (2022)

    MathSciNet  Google Scholar 

  32. He, G.L., Geng, X.G., Wu, L.H.: Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy. SIAM J. Math. Anal. 46, 1348 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Wazwaz, A.M.: New \((3+1)\)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  34. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (\(3+1\))- and (\(2+1\))-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  35. Geng, X.G., Li, Y.H., Xue, B.: A second-order three-wave interaction system and its rogue wave solutions. Nonlinear Dyn. 105, 2575 (2021)

    Google Scholar 

  36. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, \(N\)-soliton, higher-order breather, periodic-wave and hybrid solutions to a (\(3+1\))-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

    Google Scholar 

  38. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (\(2+1\))-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417–2428 (2022)

    Google Scholar 

  39. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (\(2+1\))-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Gao, X.Y., Guo, Y.J., Shan, W.R.: On a generalized Broer-Kaup-Kupershmidt system for the long waves in shallow water. Nonlinear Dyn. 111, 9431–9437 (2023)

    Google Scholar 

  41. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (\(3+1\))-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer fluid. Nonlinear Dyn. 111, 3713–3723 (2023)

    Google Scholar 

  42. Wu, X.H., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641–5653 (2023)

    Google Scholar 

  43. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2023)

    Google Scholar 

  44. Cheng, C.D., Tian, B., Shen, Y., Zhou, T.Y.: Bilinear form and Pfaffian solutions for a (\(2+1\))-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics. Nonlinear Dyn. 111, 6659–6675 (2023)

    Google Scholar 

  45. Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a \((2+1)\)-dimensional nonlinear model. Commun. Theor. Phys. 75, 055005 (2023)

    MathSciNet  MATH  Google Scholar 

  46. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear. Sci. Numer. Simulat. 121, 107205 (2023)

    Google Scholar 

  47. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108, 4181–4194 (2022)

    Google Scholar 

  48. Liu, B., Zhang, X.E., Wang, B., Lü, X.: Rogue waves based on the coupled nonlinear Schrodinger option pricing model with external potential. Mod. Phys. Lett. B 36, 2250057 (2022)

  49. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106, 1347–1358 (2021)

    Google Scholar 

  50. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106, 1491–1507 (2021)

    Google Scholar 

  51. Ma, W.X., Batwa, S.: A binary Darboux transformation for multicomponent NLS equations and their reductions. Anal. Math. Phys. 11, 44 (2021)

    MathSciNet  MATH  Google Scholar 

  52. Ling, L.M., Zhao, L.C., Guo, B.L.: Darboux transformation and multi-dark soliton for \(N\)-component nonlinear Schrödinger equations. Nonlinearity 28, 3243 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Liu, D.Y., Tian, B., Xie, X.Y.: Bound-state solutions, Lax pair and conservation laws for the coupled higher-order nonlinear Schrödinger equations in the birefringent or two-mode fiber. Mod. Phys. Lett. B 31, 1750067 (2017)

    Google Scholar 

  54. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  55. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

  56. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (\(2+1\))-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

We have expressed our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Tian Gao or Xin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XH., Gao, YT., Yu, X. et al. Binary Darboux transformation, solitons and breathers for a second-order three-wave resonant interaction system. Nonlinear Dyn 111, 16449–16465 (2023). https://doi.org/10.1007/s11071-023-08544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08544-1

Keywords

Navigation