Skip to main content
Log in

Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the degenerate Darboux transformation, the n-order smooth positon solutions for the derivative nonlinear Schrödinger equation are generated by means of the general determinant expression of the N-soliton solution, and interesting dynamic behaviors of the smooth positons are shown by the corresponding three-dimensional plots in this paper. Furthermore, the decomposition process, bent trajectory and the change of the phase shift for the positon solutions are discussed in detail. Additionally, three kinds of mixed solutions, namely (1) the hybrid of one-positon and two-positon solutions, (2) the hybrid of two-positon and two-positon solutions, and (3) the hybrid of one-soliton and three-positon solutions, are presented and their rather complicated dynamics are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  2. Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    Article  MathSciNet  Google Scholar 

  3. Chow, K.W., Lai, W.C., Shek, C.K., Tso, K.: Positon-like Solutions of Nonlinear Evolution Equations in (2+1) Dimensions. Chaos Solitons Fractals 9, 1901–1912 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Article  Google Scholar 

  5. Beutler, R., Stahlhofen, A.A., Matveev, V.B.: What do solitons, breathers and positons have in common? Phys. Scr. 50, 9–20 (1994)

    Article  Google Scholar 

  6. Stahlhofen, A.A.: Positons of the modified Korteweg-de Vries equation. Ann. Phys. 504, 554–569 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Maisch, H., Stahlhofen, A.A.: Dynamic properties of positons. Phys. Scr. 52, 228–236 (1995)

    Article  Google Scholar 

  8. Beutler, R.: Positon solutions of the sine-Gordon equation. J. Math. Phys. 34, 3081–3109 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Stahlhofen, A.A., Matveev, V.B.: Positons for the Toda lattice and related spectral problems. J. Phys. A 28, 1957–1965 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, H.C., Liu, Y.: New positon, negaton and complexiton solutions for the Hirota–Satsuma coupled KdV system. Phys. Lett. A. 372, 5795–5798 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg-de Vries equation. Nonlinear Dyn. 89, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  12. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Waves Random Complex 28, 203–214 (2018)

    Article  MathSciNet  Google Scholar 

  13. Liu, S.Z., Zhang, Y.S., He, J.S.: Smooth positons of the second-type derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 71, 357–361 (2019)

    Article  Google Scholar 

  14. Matveev, V.B.: Positons: slowly decreasing analogues of solitons. Theor. Math. Phys. 131, 483–497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Capasso, F., Sirtori, C., Faist, J., Sivco, D.L., Chu, S.N.G., Cho, A.Y.: Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992)

    Article  Google Scholar 

  16. Ablowitz, M.J.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Theor. Phys. 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  18. Konopelchenko, B.G.: On the structure of equations integrable by the arbitrary-order linear spectral problem. J. Phys. A 14, 1237–1259 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, R.S.: On the modulation of water waves in the neighbourhood of \(kh\) \(\approx \) 1.363. Proc. R. Soc. Lond. A 357, 131–141 (1977)

    Article  MathSciNet  Google Scholar 

  20. Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321–334 (1976)

    Article  Google Scholar 

  21. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gerdjikov, V.S., Ivanov, I.: A quadratic pencil of general type and nonlinear evolution equations: II. Hierarchies of Hamiltonian structures. J. Phys. Bulg. 10, 130–143 (1983)

    MathSciNet  Google Scholar 

  23. Wadati, M., Sogo, K.: Gauge transformations in soliton theory. J. Phys. Soc. Jpn. 52, 394–398 (1983)

    Article  MathSciNet  Google Scholar 

  24. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  MathSciNet  Google Scholar 

  25. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    Article  MATH  Google Scholar 

  26. Spangler, S.P.: Nonlinear waves and chaos. In: Hada, T., Matsumoto, H. (eds.) Space Plasmas, p. 171. Tokyo: Terrapub (1997)

  27. Fedun, V., Ruderman, M.S., Erdélyi, R.: Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing. Phys. Lett. A 372, 6107–6110 (2008)

    Article  MATH  Google Scholar 

  28. Sánchez-Arriaga, G., Sanmartin, J.R., Elaskar, S.A.: Damping models in the truncated derivative nonlinear Schrödinger equation. Phys. Plasmas 14, 082108 (2007)

    Article  Google Scholar 

  29. Sánchez-Arriaga, G.: Alfvén soliton and multisoliton dynamics perturbed by nonlinear Landau damping. Phys. Plasmas 17, 082313 (2010)

    Article  Google Scholar 

  30. Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguide. Phys. Rev. A 23, 1266–1270 (1981)

    Article  Google Scholar 

  31. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393–1398 (1983)

    Article  Google Scholar 

  32. Govind, P.A.: Nonlinear Fibers Optics, 3rd edn. Academic, New York (2001)

    Google Scholar 

  33. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  MATH  Google Scholar 

  34. Kawata, T., Kobayashi, N., Inoue, H.: Soliton solution of the derivative nolinear Schrödinger equation. J. Phys. Soc. Jpn. 46, 1008–1015 (1979)

    Article  MATH  Google Scholar 

  35. Huang, N.N., Chen, Z.Y.: Alfvén solitons. J. Phys. A 23, 439–453 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, X.J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69, 066604 (2004)

    Article  MathSciNet  Google Scholar 

  37. Fla, T., Mjølhus, E., Wyller, J.: Nonlinear Landau damping of weakly dispersive circularly polarized MHD waves. Phys. Scr. 40, 219–226 (1989)

    Article  MATH  Google Scholar 

  38. Ling, L.M., Liu, Q.P.: Darboux transformation for a two-component derivative nonlinear schrödinger equation. J. Phys. A 43, 434023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014)

    Article  Google Scholar 

  40. Chan, H.N., Malomed, B.A., Chow, K.W., Ding, E.: Rogue waves for a system of coupled derivative nonlinear Schrödinger equations. Phys. Rev. E 93, 012217 (2016)

    Article  MathSciNet  Google Scholar 

  41. Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A 44, 305203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. He, J.S., Xu, S.W., Cheng, Y.: The rational solutions of the mixed nonlinear Schrödinger equation. AIP Adv. 5, 017105 (2015)

    Article  Google Scholar 

  43. Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The darboux transformation of the Kundu–Eckhaus equation. Proc. R. Soc. Lond. A 471, 1–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yuan, F., Qiu, D.Q., Liu, W., Porsezian, K., He, J.S.: On the evolution of a rogue wave along the orthogonal direction of the \((t, x)\)-plane. Commun. Nonlinear Sci. Numer. Simul. 44, 245–257 (2017)

    Article  MathSciNet  Google Scholar 

  45. He, J.S., Zhang, L., Cheng, Y.: Determinant representation of Darboux transformation for the AKNS system. Sci. China Ser. A Math. 49, 1867–1878 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 51, 2029–2035 (1982)

    Article  MathSciNet  Google Scholar 

  47. Takahashi, M., Konno, K.: N-double pole solution for the modified Korteweg-de Vries equation by the Hirota’s method. J. Phys. Soc. Jpn. 58, 3505–3508 (1989)

    Article  MathSciNet  Google Scholar 

  48. Karlsson, M., Kaup, D.J., Malomed, B.A.: Interactions between polarized soliton pulses in optical fibers: exact solutions. Phys. Rev. E 54, 5802–5808 (1996)

    Article  Google Scholar 

  49. Shek, C.M., Grimshaw, R.H.J., Ding, E., Chow, K.W.: Interactions of breathers and solitons of the extended Korteweg-de Vries equation. Wave Motion 43, 158–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Alejo, M.A.: Focusing mKdV breather solutions with nonvanishing boundary condition by the inverse scattering method. J. Nonlinear Math. Phys. 19, 125009 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Olmedilla, E.: Multiple-pole solutions of the nonlinear Schrödinger equation. Phys. D 25, 330–346 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  52. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  53. Wang, L.H., He, J.S., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Zhejiang Province under Grant Nos. LY15A010005 and LZ19A010001, the Natural Science Foundation of Ningbo under Grant No. 2018A610197, the NSF of China under Grant Nos. 11601187, 11671219, K. C. Wong Magna Fund in Ningbo University, Scientific Research Foundation of Graduate School of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohua Li.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

Authors declare that they comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Xu, S., Li, M. et al. Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. Nonlinear Dyn 97, 2135–2145 (2019). https://doi.org/10.1007/s11071-019-05111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05111-5

Keywords

Navigation