Skip to main content
Log in

Negative-order integrable modified KdV equations of higher orders

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A variety of negative-order integrable modified KdV (mKdV) equations of higher orders is constructed. The inverse profile of the recursion operator of the modified KdV equation is invested to develop these new integrable equations. The correlation between integrability and recursion operators is demonstrated. We employ the bilinear method for obtaining multiple-soliton solutions for the generalized developed equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18(6), 1212–1215 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fuchssteiner, B.: Application of hereditary symmetries to nonlinear evolution equations. Nonlinear Anal. Theory Meth. Appl. 3, 849–862 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Santini, P.M., Fokas, A.: Recursion operators and bi-Hamiltonian structures in multidimensions. I. Commun. Math. Phys. 115, 375–419 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fokas, A., Santini, P.M.: Recursion operators and bi-Hamiltonian structures in multidimensions. II. Comm. Math. Phys. 116, 449–474 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear ordinary and partial differential equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fokas, A.: Symmetries and integrability. Stud. Appl. Math. 77, 253–299 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sanders, J., Wang, P.: Integrable systems and their recursion operators. Nonlinear Anal. 47, 5213–5240 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Magri, F.: Lectures Notes in Physics. Springer, Berlin (1980)

    Google Scholar 

  9. Zhang, D., Ji, J., Zhao, S.: Soliton scattering with amplitude changes of a negative order AKNS equation. Physica D 238, 2361–2367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Verosky, J.M.: Negative powers of Olver recursion operators. J. Math. Phys. 32(7), 1733–1736 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baldwin, D., Hereman, W.: A symbolic algorithm for computing recursion operators of nonlinear partial differential equations. Int. J. Comput. Math. 87(5), 1094–1119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Poole, D., Hereman, W.: Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions. J. Symb. Comput. 46(12), 1355–1377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khoury, S.A.: New anstz for obtaining wave solutions of the generalized Camassa–Holm equation. Chaos Solitons Fractals 25(3), 705–710 (2005)

    Article  MathSciNet  Google Scholar 

  14. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leblond, H., Mihalache, D.: Few-optical-cycle solitons: modified Korteweg–de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys. Rev. A 79, 063835 (2009)

    Article  Google Scholar 

  16. Khalique, C.M.: Solutions and conservation laws of Benjamin–Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities. Pramana 80, 413–427 (2013)

    Article  Google Scholar 

  17. Kara, A.H., Khalique, C.M.: Nonlinear evolution-type equations and their exact solutions using inverse variational methods. J. Phys. A: Math. Gen. 38, 4629–4636 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theorem. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  19. Wazwaz, A.M.: \(N\)-soliton solutions for the Vakhnenko equation and its generalized forms. Phys. Scr. 82, 065006 (2010)

    Article  MATH  Google Scholar 

  20. Wazwaz, A.M.: A new generalized fifth-order nonlinear integrable equation. Phys. Scr. 83, 035003 (2011)

    Article  MATH  Google Scholar 

  21. Wazwaz, A.M.: Distinct variants of the KdV equation with compact and noncompact structures. Appl. Math. Comput. 150, 365–377 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83(1), 591–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3 + 1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiao, Z., Fan, E.: Negative-order Korteweg–de Vries equations. Phys. Rev. E 86, 016601 (2012)

    Article  Google Scholar 

  25. Qiao, Z., Strampp, W.: Negative order MKdV hierarchy and a new integrable Neumann-like system. Phys. A 313, 365–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dehghan, M.: A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dyn. 50(1), 111–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wazwaz, AM. Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn 93, 1371–1376 (2018). https://doi.org/10.1007/s11071-018-4265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4265-3

Keywords

Navigation