Skip to main content
Log in

Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a new kind of fractional dynamical equations, i.e., the fractional generalized Hamiltonian equations in terms of combined Riesz derivatives, and it is proved that the fractional generalized Hamiltonian system possesses consistent algebraic structure and Lie algebraic structure, and the Poisson conservation law of the fractional generalized Hamiltonian system is investigated. Then the conditions, which a fractional generalized Hamiltonian system can be reduced to a generalized Hamiltonian system, a fractional Hamiltonian system and a Hamiltonian system are given. Further, the conserved quantities of a fractional dynamical system are given to illustrate the method and results of the application. At last, a new fractional Volterra model of the three species groups is presented and its conserved quantities are obtained, by using the method of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1979)

    Google Scholar 

  2. Mei, F.X.: Nonholonomic mechanics. Appl. Mech. Rev. 53, 283–303 (2000)

    Article  Google Scholar 

  3. Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  4. Luo, S.K., Fu, J.L., Chen, X.W.: The algebraic structure of the dynamical equations for the variable mass nonholonomic systems. J. Electr. Power 13, 168–174 (1998)

    Google Scholar 

  5. Luo, S.K., Chen, X.W., Guo, Y.X.: Algebraic structure and Poisson integrals of rotational relativistic Birkhoff system. Chin. Phys. 11, 523–528 (2002)

    Article  Google Scholar 

  6. Mei, F.X., Zhang, Y.F., Shi, R.C.: Dynamics algebra and its application. Acta Mech. 137, 255–260 (1999)

    Article  MATH  Google Scholar 

  7. Noether, A.E.: Invariant variations problem. Nachr. Akad. Wiss. Gott. Math. -Phys. 2, 235–237 (1918)

    Google Scholar 

  8. Mei, F.X.: The Noether’s theory of Birkhoffian systems. Sci. China Ser. A 36, 1456–1467 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Luo, S.K.: Generalized Noether theorem for variable mass higher order nonholonomic mechanics systems in noninertial reference framer. Chin. Sci. Bull. 36, 1930–1932 (1991)

    Google Scholar 

  10. Luo, S.K.: Generalized Noether theorem of nonholonomic nonpotential system in noninertial reference frames. Appl. Math. Mech. 12, 927–934 (1991)

    Article  MATH  Google Scholar 

  11. Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68, 53–62 (2012)

    Article  MATH  Google Scholar 

  12. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A, Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hojman, S.A.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A, Math. Gen. 25, 291–295 (1992)

    Article  MathSciNet  Google Scholar 

  14. Mei, F.X.: Lie symmetry and conservation law of Birkhoff system. Chin. Sci. Bull. 44, 318–320 (1999)

    Article  MATH  Google Scholar 

  15. Chen, X.W., Liu, C.M., Li, Y.M.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Poincaré equations. Chin. Phys. 15, 470–474 (2006)

    Article  Google Scholar 

  16. Chen, X.W., Li, Y.M., Zhao, Y.H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337, 274–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Z.J., Jiang, W.A., Luo, S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. 67, 445–455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, W.A., Li, L., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and adiabatic invariants of non-Noether type for generalized Birkhoffian systems. Nonlinear Dyn. 67, 1075–1081 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, S.K., Li, Z.J., Li, L.: A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space. Acta Mech. 223, 2621–2632 (2012)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Y., Mei, F.X.: Lie symmetries of mechanical systems with unilateral holonomic constraints. Chin. Sci. Bull. 45, 1354–1358 (2000)

    Article  MathSciNet  Google Scholar 

  21. Ding, N., Fang, J.H., Wang, P., Zhang, X.N.: Perturbation to Lie symmetries and adiabatic invariants for general holonomic mechanical system. Commun. Theor. Phys. 48, 19–22 (2007)

    Article  MathSciNet  Google Scholar 

  22. Mei, F.X.: Symmetry and Conserved Quantity of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2004)

    Google Scholar 

  23. Luo, S.K.: Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian canonical equations in singular system. Acta Phys. Sin. 53, 5–10 (2004)

    MATH  Google Scholar 

  24. Jia, L.Q., Wang, X.X., Zhang, M.L., Han, Y.L.: Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 69, 1807–1812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jia, L.Q., Xie, J.F., Zheng, S.W.: Structure equation and Mei conserved quantity for Mei symmetry of Appell equations. Chin. Phys. B 17, 17–22 (2008)

    Article  Google Scholar 

  26. Xie, Y.L., Jia, L.Q.: Special Lie–Mei symmetry and conserved quantity of Appell equations expressed by Appell function. Chin. Phys. Lett. 27, 120201 (2010)

    Article  Google Scholar 

  27. Cai, J.L.: Conformal invariance and conserved quantities of general holonomic systems. Chin. Phys. Lett. 25, 1523–1526 (2008)

    Article  Google Scholar 

  28. Cai, J.L.: Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Phys. Sin. 58, 22–27 (2009)

    MATH  Google Scholar 

  29. Cai, J.L.: Conformal invariance and conserved quantity for the nonholonomic system of Chetaev’s type. Int. J. Theor. Phys. 49, 201–211 (2010)

    Article  MATH  Google Scholar 

  30. Cai, J.L., Mei, F.X.: Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Phys. Sin. 57, 5369–5373 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Pauli, W.: On the Hamiltonian structure of non-local field theories. Nuovo Cimento 10, 648–667 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  32. Martin, J.L.: Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator. Proc. R. Soc. A, Math. Phys. Eng. Sci. 251, 536–542 (1959)

    Article  MATH  Google Scholar 

  33. Li, J.B., Zhao, X.H., Liu, Z.R.: Theory and Application of the Generalized Hamilton Systems. Science Press, Beijing (1994)

    Google Scholar 

  34. Maschke, B.M.J., Ortega, R., van der Schaft, A.: Energy based Lyapunov functions for forced Hamiltonian systems with dissipation. In: Proc of CDC, Tampa, FL, vol. 98, pp. 3599–3604 (1998)

    Google Scholar 

  35. Chen, D.Z., Xi, Z.R., Lu, Q., Mei, S.W.: Geometric structure of general Hamiltonian control system and its application. Sci. China Ser. E 30, 341–354 (2000)

    Google Scholar 

  36. Wang, Y.Z., Cheng, D.Z., Li, C.W.: Generalized Hamiltonian realization and its application to power systems. Acta Autom. Sin. 28, 745–753 (2002)

    MathSciNet  Google Scholar 

  37. Mei, F.X.: Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Phys. Sin. 52, 1048–1050 (2003)

    MATH  Google Scholar 

  38. Huang, Z.L.: The several class of dynamics and control of nonlinear stochastic system. Ph.D. Dissertation (Mentor: Zhu, W.Q.), Zhejiang University, Hangzhou (2005)

  39. Zhang, S.Y., Deng, Z.C.: An algorithm for preserving structure of generalized Hamilton system. Chin. J. Comput. Mech. 22, 47–50 (2005)

    Article  Google Scholar 

  40. Li, L., Peng, W., Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of generalized Hamiltonian system with additional terms. Nonlinear Dyn. (2013). doi:10.1007/s11071-012-0743-1

    Google Scholar 

  41. Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)

    Article  Google Scholar 

  43. Jiang, W.A., Luo, S.K.: Stability for manifolds of equilibrium state of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MathSciNet  Google Scholar 

  44. Jia, L.Q., Zheng, S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Shang, M., Mei, F.X.: Integrals of generalized Hamilton systems with additional terms. Chin. Phys. 14, 1707–1793 (2005)

    Article  Google Scholar 

  46. Jiang, W.A., Luo, S.K.: Mei symmetry leading to Mei conserved quantity of generalized Hamilton systems. Acta Phys. Sin. 60, 060201 (2011)

    MATH  Google Scholar 

  47. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  48. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  49. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  50. Klimek, M.: Fractional sequential mechanics model with symmetric fractional derivatives. Czechoslov. J. Phys. 51, 1348–1354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. Agrawal, O.P.: Generalized variational problems and Euler–Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Lett. Nuovo Cimento Soc. Ital. Fis. 119, 73–79 (2004)

    Google Scholar 

  54. Muslih, S.I., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A, Math. Gen. 39, 9797–9815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tarasov, V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  57. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  58. Laskin, N.: Fractional Schrodinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  59. Frederico, S.F., Torres, D.F.M.: Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3, 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  60. Mathai, A.M., Saxena, R.K.: The H-Function with Applications in Statistics and Other Disciplines. Wiley Eastern, New Delhi (1978)

    Google Scholar 

  61. Chen, L.Q., Zhao, W.J., Zu, W.J.: Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law. J. Sound Vib. 278, 861–871 (2004)

    Article  MATH  Google Scholar 

  62. Chen, L.C., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 2312241 (2009)

    Google Scholar 

  63. Radwan, A.G., Soliman, A.M., Elwakli, A.S., et al.: On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40, 2317–2328 (2009)

    Article  MATH  Google Scholar 

  64. Shen, Y.J., Yang, S.P., Xing, H.J.: Super-harmonic resonance of fractional-order Duffing oscillator. Acta Mech. Sin. 44, 762–768 (2012)

    MathSciNet  Google Scholar 

  65. Wang, Z.H., Hu, H.Y.: Stability of a linear oscillator with damping force of fractional order derivative. Sci. China Ser. G, Phys. Mech. Astron. 53, 345–352 (2010)

    Article  Google Scholar 

  66. Zhang, H., Li, G.H., Luo, M.K.: Fractional backward Kolmogorov equations. Chin. Phys. B 21, 060201 (2012)

    Article  Google Scholar 

  67. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0789-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaokai Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S., Li, L. Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn 73, 639–647 (2013). https://doi.org/10.1007/s11071-013-0817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0817-8

Keywords

Navigation