Skip to main content
Log in

Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For a nonlinear nonholonomic constrained mechanical system with the action of small forces of perturbation, Lie symmetries, symmetrical perturbation, and a new type of non-Noether adiabatic invariants are presented in general infinitesimal transformation of Lie groups. Based on the invariance of the equations of motion for the system under general infinitesimal transformation of Lie groups, the Lie symmetrical determining equations, constraints restriction equations, additional restriction equations, and exact invariants of the system are given. Then, under the action of small forces of perturbation, the determining equations, constraints restriction equations, and additional restriction equations of the Lie symmetrical perturbation are obtained, and adiabatic invariants of the Lie symmetrical perturbation, the weakly Lie symmetrical perturbation, and the strongly Lie symmetrical perturbation for the disturbed nonholonomic system are obtained, respectively. Furthermore, a set of non-Noether exact invariants and adiabatic invariants are given in the special infinitesimal transformations. Finally, one example is given to illustrate the application of the method and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hertz, H.R.: Die Prinzipien der Mechanik. GesammelteWerke, Leibzing (1894)

    Google Scholar 

  2. Mei, F.X.: Nonholonomic mechanics. ASME Appl. Mech. Rev. 53, 283–305 (2000)

    Article  Google Scholar 

  3. Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained Systems. Science Press, Beijing (2008)

    Google Scholar 

  4. Li, Z.P., Jiang, J.H.: Symmetries in Constrained Canonical Systems. Science Press, Beijing (2002)

    Google Scholar 

  5. Luo, S.K.: Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic systems. In: Proceedings of the International Conference on Dynamics, Vibration and Control, pp. 645–652. Peking University Press, Beijing (1990)

    Google Scholar 

  6. Luo, S.K.: Relativistic variation principles and equation of motion for variable mass controllable mechanical systems. Appl. Math. Mech. 17, 683–692 (1996)

    Article  MATH  Google Scholar 

  7. Liu, Y.Z.: Spacecraft Attitude Dynamics. National Defense Industry Press, Beijing (1995)

    Google Scholar 

  8. Ostrovskaya, S., Angels, J.: Nonholonomic systems revisited within the frame work of analytical mechanics. ASME Appl. Mech. Rev. 51, 415–433 (1998)

    Article  Google Scholar 

  9. Papastavridis, J.G.: A panoramic overview of the principles and equations of motion of advanced engineering dynamics. ASME Appl. Mech. Rev. 51, 239–265 (1998)

    Article  Google Scholar 

  10. Noether, A.E.: Invariant variations problem. Nachr. Akad. Wiss. Gött. Math.-Phys. 2, 235–257 (1918)

    Google Scholar 

  11. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A, Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lutzky, M.: Non-invariance symmetries and constants of the motion. Phys. Lett. A 72, 86–88 (1979)

    Article  MathSciNet  Google Scholar 

  13. Lutzky, M.: Origin of non-Noether invariants. Phys. Lett. A 75, 8–10 (1979)

    Article  MathSciNet  Google Scholar 

  14. Djukić, D.J.S., Vujanvić, B.D.: Noether’s theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vujanović, B.: Conservation laws of dynamical systems via D’Alembert’s principle. Int. J. Non-Linear Mech. 13, 185–197 (1978)

    Article  MATH  Google Scholar 

  16. Vujanović, B.: A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss. Acta Mech. 65, 63–80 (1986)

    Article  Google Scholar 

  17. Hojman, S.A.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A, Math. Gen. 25, 291–295 (1992)

    Article  MathSciNet  Google Scholar 

  18. Lutzky, M.: Conserved quantities and velocity dependent symmetries in Lagrangian dynamics. Int. J. Non-Linear Mech. 33, 393–396 (1999)

    Article  MathSciNet  Google Scholar 

  19. Lutzky, M.: Conserved quantities from non-Noether symmetries without alternative Lagrangians. Int. J. Non-Linear Mech. 34, 387–390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999)

    Google Scholar 

  21. Luo, S.K.: Generalized Noether theorem of variable mass higher-order nonholonomic mechanical system in non-inertial reference frame. Chin. Sci. Bull. 36, 1930–1932 (1991)

    Google Scholar 

  22. Luo, S.K.: A new type of Lie symmetrical non-Noether conserved quantity for nonholonomic systems. Chin. Phys. 13, 2182–2186 (2004)

    Article  Google Scholar 

  23. Cai, J.L.: Conformal invariance and conserved quantity for the nonholonomic system of Chetaev’s type. Int. J. Theor. Phys. 49, 201–211 (2010)

    Article  MATH  Google Scholar 

  24. Cai, J.L.: Conformal invariance and conserved quantity of Hamilton system under second-class Mei symmetry. Acta Phys. Pol. A 117, 445–448 (2010)

    Google Scholar 

  25. Xie, Y.L., Jia, L.Q.: Special Lie–Mei symmetry and conserved quantities of Appell equations expressed by Appell fun. Chin. Phys. Lett. 27, 120201 (2010)

    Article  Google Scholar 

  26. Burgers, J.M.: Die adiabatischen invarianten bedingt periodischenr systems. Ann. Phys. (Leipz.) 52, 195–202 (1917)

    Article  Google Scholar 

  27. Kruskal, M.: Asymptotic theory of Hamiltonian and other system with all solutions nearly periodic. J. Math. Phys. 3, 806–828 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Djukić, D.J.S.: Adiabatic invariants for dynamical systems with one degree of freedom. Int. J. Non-Linear Mech. 16, 489–498 (1981)

    Article  MATH  Google Scholar 

  29. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  30. Bulanov, S.V., Shasharina, S.G.: Behaviour of the adiabatic invariant near the separatrix in a stellarator. Nucl. Fusion 32, 1531–1543 (1992)

    Article  Google Scholar 

  31. Liu, D.Y.: Berry phases in the quantum state of the isotropic harmonic oscillator with time-dependent frequency and boundary conditions. Acta Phys. Sin. 8, 1–7 (1995) (oversees Edition)

    Google Scholar 

  32. Sommarive, A.M.: Averaging perturbation method for the dominant behavior analysis of adiabatic single-controlled oscillators. Int. J. Circuit Theory Appl. 21(5), 425–436 (1993)

    Article  Google Scholar 

  33. Notte, J., Falans, J., Chu, R., Wurtele, J.S.: Experimental breaking of an adiabatic invariant. Phys. Rev. Lett. 70, 3900–3903 (1993)

    Article  Google Scholar 

  34. Ostrovsky, V.N., Prudov, N.V.: Planetary atom states: adiabatic invariant theory. J. Phys. B 2(20), 4435 (1995)

    Article  Google Scholar 

  35. Zhao, Y.Y., Mei, F.X.: Exact invariants and adiabatic invariants of general mechanical systems. Acta Mech. Sin. 28, 207–216 (1996)

    MathSciNet  Google Scholar 

  36. Chen, X.W., Li, Y.M., Zhao, Y.H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337, 274–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y.: A new type of adiabatic invariants for nonconservative systems of generalized classical mechanics. Chin. Phys. 15, 2006 (1935–1940)

    Google Scholar 

  38. Luo, S.K.: Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type of relativistic Birkhoffian systems. Commun. Theor. Phys. 47, 25–30 (2007)

    Article  Google Scholar 

  39. Ding, N., Fang, J.H.: Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllable mechanical systems. Commun. Theor. Phys. 54, 785–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaokai Luo.

Additional information

This work is partly supported by National Natural Science Foundation of China (Grant No. 10372053).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Jiang, W. & Luo, S. Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn 67, 445–455 (2012). https://doi.org/10.1007/s11071-011-9993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9993-6

Keywords

Navigation