Skip to main content
Log in

A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

For a generalized Hamiltonian system, a new Lie symmetrical method to find a conserved quantity is presented in a general infinitesimal transformation of Lie groups. Based on the invariance of the differential equations of motion for the system under a general infinitesimal transformation of Lie groups, the Lie symmetrical determining equations are obtained. And a number of important relationships of the Lie symmetrical method for a generalized Hamiltonian system are investigated, which reveal the interior properties of the system. By using the relationships, a Lie symmetrical basic integral variable relation and a new Lie symmetrical conservation law for generalized Hamiltonian systems is presented. The basic integral variable relation not only can be used for a linear dynamic system but can also be used for a nonlinear dynamic system. The new conserved quantity is constructed in terms of infinitesimal generators of Lie symmetry and the interior properties of the system itself without solving the structural equation that may be very difficult to solve. Then, the method is applied in the generalized Hamiltonian system of even dimensions and the Hamiltonian system, respectively. Furthermore, the relationship between the generalized Hamiltonian system and a Birkhoffian system is studied, and a Lie symmetrical conservation law for a semiautonomous (or autonomous) Birkhoffian system is obtained. Finally, one example is given to illustrate the method and results of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    MATH  Google Scholar 

  2. Feng K.: On Difference Schemes and Symplectic Geometry. Science Press, Beijing (1985)

    Google Scholar 

  3. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  4. Zhong W.X.: Duality System in Applied Mechanics. Science Press, Beijing (2002)

    Google Scholar 

  5. Zhu W.Q.: Dynamics and Control of Nonlinear Stochastic System: Hamilton Theory System Frame. Science Press, Beijing (2003)

    Google Scholar 

  6. Mei F.X., Wu H.B.: Dynamics of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2009)

    Google Scholar 

  7. Luo S.K., Zhang Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  8. Pauli W.: On the Hamiltonian structure of non-local field theories. II. Nuovo Cimento 10, 648–667 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martin J.L.: Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 251, 536–542 (1959)

    Article  MATH  Google Scholar 

  10. Li J.B., Zhao X.H., Liu Z.R.: Theory and Application of Generalized Hamiltonian Systems. Science Press, Beijing (1994)

    Google Scholar 

  11. Maschke, B.M.J., Ortega, R., van der Schaft, A.J.: Energybased Lyapunov functions for forced Hamiltonian systems with dissipation. In: Proceedings of CDC, Tampa, FL, vol. 98, pp. 3599–3604 (1998)

  12. Chen D.Z., Xi Z.R., Lu Q., Mei S.W.: Geometric structure of a general Hamiltonian control system and its application. Sci. China Ser. E 30, 341–354 (2000)

    Google Scholar 

  13. Wang Y.Z., Cheng D.Z., Li C.W.: Generalized Hamiltonian realization and its application to power systems. Acta Autom. Sin. 28, 745–753 (2002)

    MathSciNet  Google Scholar 

  14. Mei F.X.: Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Phys. Sin. 52, 1048–1050 (2003)

    MATH  Google Scholar 

  15. Huang, Z.L., Zhu, W.Q.: The several class of dynamics and control of nonlinear stochastic system. Ph.D. dissertation, Zhejiang University, Hangzhou (2005)

  16. Zhang S.Y., Deng Z.C.: An algorithm for preserving structure of generalized Hamilton system. Chin. J. Comput. Mech. 22, 47–50 (2005)

    Article  Google Scholar 

  17. Jia L.Q., Zheng S.W.: Mei symmetry of generalized Hamilton systems with additional terms. Acta Phys. Sin. 55, 3829–3832 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Jiang W.A., Luo S.K.: Mei symmetry leading to Mei conserved quantity of generalized Hamilton systems. Acta Phys. Sin. 60, 060201 (2011)

    MATH  Google Scholar 

  19. Jiang W.A., Luo S.K.: Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica 47, 379–383 (2012)

    Article  MathSciNet  Google Scholar 

  20. Jiang W.A., Luo S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. 67, 475–482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Noether A.E.: Invariant variations problem. Nachr. Akad. Wiss. Göttingen Math. Phys. 2, 235–237 (1918)

    Google Scholar 

  22. Lutzky M.: Dynamical symmetries and conserved quantities. J. Phys. A Math. Gen. 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lutzky M.: Non-invariance symmetries and constants of the motion. Phys. Lett. A. 72, 86–88 (1979)

    Article  MathSciNet  Google Scholar 

  24. Lutzky M.: Origin of non-Noether invariants. Phys. Lett. A. 75, 8–10 (1979)

    Article  MathSciNet  Google Scholar 

  25. Hojman S.A.: A new conservation law constructed without using either Lagrangians or Hamiltonians. J. Phys. A Math. Gen. 25, 291–295 (1992)

    Article  MathSciNet  Google Scholar 

  26. Lutzky M.: Conserved quantities and velocity dependent symmetries in Lagrangian dynamics. Int. J. Non-Linear Mech. 33, 393–396 (1999)

    Article  MathSciNet  Google Scholar 

  27. Lutzky M.: Conserved quantities from non-Noether symmetries without alternative Lagrangians. Int. J. Non-Linear Mech. 34, 387–390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mei F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999)

    Google Scholar 

  29. Mei F.X.: Lie symmetry and conservation law of Birkhoff system. Chin. Sci. Bull. 44, 318–320 (1999)

    Article  MATH  Google Scholar 

  30. Zhang Y., Mei F.X.: Lie symmetries of mechanical systems with unilateral holonomic constraints. Chin. Sci. Bull. 45, 1354–1358 (2000)

    Article  MathSciNet  Google Scholar 

  31. Luo S.K.: Form invariance and Lie symmetries of rotational relativistic Birkhoff system. Chin. Phys. Lett. 19, 449–451 (2002)

    Article  Google Scholar 

  32. Luo S.K.: A new type of Lie symmetrical non-Noether conserved quantity for nonholonomic systems. Chin. Phys. 13, 2182–2186 (2004)

    Article  Google Scholar 

  33. Fang J.H., Zhao S.Q., Jiao Z.Y.: The Lie symmetries and conserved quantities of variable-mass nonholonomic system of non-Chetaev’s type in phase space. Appl. Math. Mech. 23, 1215–1220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu H.B.: Lie symmetry and non-Noether conserved quantity for Hamiltonian systems. J. Beijing Inst. Technol. 13, 94–95 (2004)

    MATH  Google Scholar 

  35. Chen X.W., Mei F.X.: Perturbation to the symmetries and adiabatic invariants of holonomic variable mass systems. Chin. Phys. 9, 721–725 (2000)

    Article  MathSciNet  Google Scholar 

  36. Chen X.W., Li Y.M., Zhao Y.H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A. 337, 274–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li Y.M.: Lie symmetries, perturbation to symmetries and adiabatic invariants of generalized Birkhoff systems. Chin. Phys. Lett. 27, 010202 (2010)

    Article  Google Scholar 

  38. Cai J.L.: Conformal invariance and conserved quantities of general holonomic systems. Chin. Phys. Lett. 25, 1523–1526 (2008)

    Article  Google Scholar 

  39. Cai J.L., Mei F.X.: Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Phys. Sin. 57, 5369–5373 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Zhang H.B., Chen L.Q.: The united form of Hojman’s conservation law and Lutzky’s conservation law. J. Phys. Soc. Jpn. 74, 905–909 (2005)

    Article  MATH  Google Scholar 

  41. Zhang Y.: Generalized Lutzky conserved quantities of holonomic systems with remainder coordinates subject to unilateral constraints. Commun. Theor. Phys. 45, 732–736 (2006)

    Article  Google Scholar 

  42. Zheng S.W., Xie J.F., Jia L.Q.: Symmetry and Hojman conserved quantity of Tzénoff equations for unilateral holonomic system. Commun. Theor. Phys. 48, 43–47 (2007)

    Article  MathSciNet  Google Scholar 

  43. Luo S.K.: Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type for disturbed nonholonomic systems. Chin. Phys. Lett. 24, 3017–3020 (2007)

    Article  Google Scholar 

  44. Luo S.K.: A new type of non-Noether adiabatic invariants for disturbed Lagrangian systems: adiabatic invariants of generalized Lutzky type. Chin. Phys. Lett. 24, 2463–2466 (2007)

    Article  Google Scholar 

  45. Luo S.K., Guo Y.X.: Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type of relativistic Birkhoffian systems. Commun. Theor. Phys. 47, 25–30 (2007)

    Article  Google Scholar 

  46. Xie Y.L., Jia L.Q.: Special Lie–Mei symmetry and conserved quantities of Appell equations expressed by Appell fun. Chin. Phys. Lett. 27, 120201 (2010)

    Article  Google Scholar 

  47. Huang W.L., Cai J.L.: Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system. Acta Mech. 223, 433–440 (2012)

    Article  MathSciNet  Google Scholar 

  48. Cai J.L.: Conformal invariance and conserved quantity of Hamilton system under second-class Mei symmetry. Acta Phys. Pol. A. 117, 445–448 (2010)

    Google Scholar 

  49. Huang W.L., Cai J.L.: Conformal invariance of higher-order Lagrange systems by Lie point transformation. Chin. Phys. Lett. 28, 110203 (2011)

    Article  Google Scholar 

  50. Jia L.Q., Wang X.X., Zhang M.L., Han Y.L.: Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 69, 1807–1812 (2012)

    Article  Google Scholar 

  51. Cai J.L.: Conformal invariance of Mei symmetry for the non-holonomic systems of non-Chetaev’s type. Nonlinear Dyn. 69, 487–493 (2012)

    Article  Google Scholar 

  52. Wang P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68, 53–62 (2012)

    Article  MATH  Google Scholar 

  53. Li Z.J., Jiang W.A., Luo S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. 67, 445–455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Jiang W.A., Li L., Li Z.J., Luo S.K.: Lie symmetrical perturbation and adiabatic invariants of non-Noether type for generalized Birkhoffian systems. Nonlinear Dyn. 67, 1075–1081 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Li, Z.J., Luo, S.K.: A new Lie symmetrical method of finding conserved quantity for Birkhoffian systems. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0517-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, SK., Li, ZJ., Peng, W. et al. A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech 224, 71–84 (2013). https://doi.org/10.1007/s00707-012-0733-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0733-x

Keywords

Navigation