Skip to main content
Log in

Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38MAPK or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GLAST:

Glutamate/aspartate transporter

GLT-1:

Glutamate transporter-1

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

i.c.v.:

Intracerebroventricular

NMDA:

N-Methyl-d-aspartate

NMDAR:

N-Methyl-d-aspartate receptor

QA:

Quinolinic acid, 2,3-pyridine dicarboxylic acid

MAPK:

Mitogen-activated protein kinases pathway

PI3K/Akt:

Phosphatidylinositol-3 kinase/protein kinase B

References

  1. Myint AM (2012) Kynurenines: from the perspective of major psychiatric disorders. FEBS J 279(8):1375–1385

    Article  CAS  PubMed  Google Scholar 

  2. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365

    Article  CAS  PubMed  Google Scholar 

  3. Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, De Bem AF, Tasca CI (2015) Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress. Neurol Sci 36(8):1449–1456

    Article  PubMed  Google Scholar 

  4. Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. NeuroReport 11(2):249–253

    Article  CAS  PubMed  Google Scholar 

  5. Tavares RG, Tasca CI, Santos CE, Alves LB, Porciuncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40(7):621–627

    Article  CAS  PubMed  Google Scholar 

  6. Piermartiri TC, Vandresen-Filho S, de Araujo Herculano B, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115

    Article  CAS  PubMed  Google Scholar 

  7. Ting KK, Brew BJ, Guillemin GJ (2009) Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J Neuroinflamm 6:36

    Article  Google Scholar 

  8. Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, Herculano BA, De Bem AF, Tasca CI (2013) Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem Int 62(7):948–955

    Article  CAS  PubMed  Google Scholar 

  9. Smialowska M, Golembiowska K, Kajta M, Zieba B, Dziubina A, Domin H (2012) Selective mGluR1 antagonist EMQMCM inhibits the kainate-induced excitotoxicity in primary neuronal cultures and in the rat hippocampus. Neurotox Res 21(4):379–392

    Article  CAS  PubMed  Google Scholar 

  10. Cucchiara B, Kasner SE (2001) Use of statins in CNS disorders. J Neurol Sci 187(1–2):81–89

    Article  CAS  PubMed  Google Scholar 

  11. Lim JH, Lee JC, Lee YH, Choi IY, Oh YK, Kim HS, Park JS, Kim WK (2006) Simvastatin prevents oxygen and glucose deprivation/reoxygenation-induced death of cortical neurons by reducing the production and toxicity of 4-hydroxy-2E-nonenal. J Neurochem 97(1):140–150

    Article  CAS  PubMed  Google Scholar 

  12. Yan J, Xu Y, Zhu C, Zhang L, Wu A, Yang Y, Xiong Z, Deng C, Huang XF, Yenari MA, Yang YG, Ying W, Wang Q (2011) Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. PLoS ONE 6(6):e20945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martins WC, dos Santos VV, dos Santos AA, Vandresen-Filho S, Dal-Cim TA, de Oliveira KA, Mendes-de-Aguiar CB, Farina M, Prediger RD, Viola GG, Tasca CI (2015) Atorvastatin Prevents cognitive deficits induced by intracerebroventricular amyloid-beta1-40 administration in mice: involvement of glutamatergic and antioxidant systems. Neurotox Res 28(1):32–42

    Article  PubMed  Google Scholar 

  14. Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Davalos A, Gasull T (2008) Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke 39(4):1269–1275

    Article  CAS  PubMed  Google Scholar 

  15. Vaughan CJ (2003) Prevention of stroke and dementia with statins: effects beyond lipid lowering. Am J Cardiol 91(4A):23B–29B

    Article  CAS  PubMed  Google Scholar 

  16. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40(1):139–146

    Article  CAS  PubMed  Google Scholar 

  17. Amaya M, Baranova A, van Hoek ML (2011) Protein prenylation: a new mode of host-pathogen interaction. Biochem Biophys Res Commun 416(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  18. Whelan JT, Hollis SE, Cha DS, Asch AS, Lee MH (2012) Post-transcriptional regulation of the Ras-ERK/MAPK signaling pathway. J Cell Physiol 227(3):1235–1241

    Article  CAS  PubMed  Google Scholar 

  19. Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, Mahmood A, Zhou D, Chopp M (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25(2):130–139

    Article  PubMed  Google Scholar 

  20. Shepardson NE, Shankar GM, Selkoe DJ (2011) Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations. Arch Neurol 68(11):1385–1392

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lennernas H, Fager G (1997) Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin Pharmacokinet 32(5):403–425

    Article  CAS  PubMed  Google Scholar 

  22. Vandresen-Filho S, de Araujo Herculano B, Franco JL, Boeck CR, Dafre AL, Tasca CI (2007) Evaluation of glutathione metabolism in NMDA preconditioning against quinolinic acid-induced seizures in mice cerebral cortex and hippocampus. Brain Res 1184:38–45

    Article  CAS  PubMed  Google Scholar 

  23. de Araujo Herculano B, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ERK signaling pathways. Behav Brain Res 219(1):92–97

    Article  Google Scholar 

  24. Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB (2012) ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 37(2):288–297

    Article  CAS  PubMed  Google Scholar 

  25. Molz S, Decker H, Oliveira IJ, Souza DO, Tasca CI (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 30(1):83–89

    Article  CAS  PubMed  Google Scholar 

  26. Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33(1):27–36

    Article  CAS  PubMed  Google Scholar 

  27. Molz S, Dal-Cim T, Budni J, Martin-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues AL, Lopez MG, Tasca CI (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3beta pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    Article  CAS  PubMed  Google Scholar 

  28. Shapiro BM (1970) Regulation of glutamine synthetase by enzyme catalyzed structural modification. Angew Chem Int Ed Engl 9(9):670–678

    Article  CAS  PubMed  Google Scholar 

  29. Posser T, de Aguiar CB, Garcez RC, Rossi FM, Oliveira CS, Trentin AG, Neto VM, Leal RB (2007) Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38(MAPK) and JNK1/2 but not of ERK1/2. Arch Toxicol 81(6):407–414

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira CS, Rigon AP, Leal RB, Rossi FM (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 26(3–4):355–362

    Article  CAS  PubMed  Google Scholar 

  31. Calloni GW, Penno CA, Cordova FM, Trentin AG, Neto VM, Leal RB (2005) Congenital hypothyroidism alters the phosphorylation of ERK1/2 and p38MAPK in the hippocampus of neonatal rats. Brain Res Dev Brain Res 154(1):141–145

    Article  CAS  PubMed  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  33. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356

    Article  CAS  PubMed  Google Scholar 

  34. Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50(1–2):93–103

    Article  CAS  PubMed  Google Scholar 

  35. Harvey BK, Airavaara M, Hinzman J, Wires EM, Chiocco MJ, Howard DB, Shen H, Gerhardt G, Hoffer BJ, Wang Y (2011) Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PLoS ONE 6(8):e22135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kong Q, Takahashi K, Schulte D, Stouffer N, Lin Y, Lin CL (2012) Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiol Dis 47(2):145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishizawa Y (2001) Glutamate release and neuronal damage in ischemia. Life Sci 69(4):369–381

    Article  CAS  PubMed  Google Scholar 

  38. Obrenovitch TP, Urenjak J (1997) Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 51(1):39–87

    Article  CAS  PubMed  Google Scholar 

  39. Vandresen-Filho S, Severino PC, Constantino LC, Martins WC, Molz S, Dal-Cim T, Bertoldo DB, Silva FR, Tasca CI (2015) N-Methyl-d-aspartate preconditioning prevents quinolinic acid-induced deregulation of glutamate and calcium homeostasis in mice hippocampus. Neurotox Res 27(2):118–128

    Article  CAS  PubMed  Google Scholar 

  40. Featherstone DE, Shippy SA (2008) Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 14(2):171–181

    Article  CAS  PubMed  Google Scholar 

  41. Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43(4–5):493–499

    Article  CAS  PubMed  Google Scholar 

  42. Zou J, Wang YX, Dou FF, Lu HZ, Ma ZW, Lu PH, Xu XM (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56(4):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noack H, Lindenau J, Rothe F, Asayama K, Wolf G (1998) Differential expression of superoxide dismutase isoforms in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 23(4):285–297

    Article  CAS  PubMed  Google Scholar 

  44. Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55(4):397–402

    Article  CAS  PubMed  Google Scholar 

  45. Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Simone C, Falcone M, Riboldi G, Govoni A, Bresolin N, Comi GP (2010) Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 19(19):3782–3796

    Article  CAS  PubMed  Google Scholar 

  46. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, Ravid R, Roggendorf W, Riederer P, Grunblatt E (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11(1):97–116

    CAS  PubMed  Google Scholar 

  47. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J Neurochem 78(2):413–416

    Article  CAS  PubMed  Google Scholar 

  48. Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, de Bem AF, Prediger RD, Tasca CI (2010) Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-beta(1–40) administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 226(2):274–284

    Article  CAS  PubMed  Google Scholar 

  49. Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hossain MA, Russell JC, Gomez R, Laterra J (2002) Neuroprotection by scatter factor/hepatocyte growth factor and FGF-1 in cerebellar granule neurons is phosphatidylinositol 3-kinase/akt-dependent and MAPK/CREB-independent. J Neurochem 81(2):365–378

    Article  CAS  PubMed  Google Scholar 

  51. Chu LW, Chen JY, Yu KL, Cheng KI, Wu PC, Wu BN (2012) Neuroprotective and anti-inflammatory activities of atorvastatin in a rat chronic constriction injury model. Int J Immunopathol Pharmacol 25(1):219–230

    CAS  PubMed  Google Scholar 

  52. Mans RA, McMahon LL, Li L (2012) Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience 202:1–9

    Article  CAS  PubMed  Google Scholar 

  53. Wu H, Mahmood A, Lu D, Jiang H, Xiong Y, Zhou D, Chopp M (2010) Attenuation of astrogliosis and modulation of endothelial growth factor receptor in lipid rafts by simvastatin after traumatic brain injury. J Neurosurg 113(3):591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sims KD, Straff DJ, Robinson MB (2000) Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J Biol Chem 275(7):5228–5237

    Article  CAS  PubMed  Google Scholar 

  55. Krizman-Genda E, Gonzalez MI, Zelenaia O, Robinson MB (2005) Evidence that Akt mediates platelet-derived growth factor-dependent increases in activity and surface expression of the neuronal glutamate transporter, EAAC1. Neuropharmacology 49(6):872–882

    Article  CAS  PubMed  Google Scholar 

  56. Nakata S, Tsutsui M, Shimokawa H, Yamashita T, Tanimoto A, Tasaki H, Ozumi K, Sabanai K, Morishita T, Suda O, Hirano H, Sasaguri Y, Nakashima Y, Yanagihara N (2007) Statin treatment upregulates vascular neuronal nitric oxide synthase through Akt/NF-kappaB pathway. Arterioscler Thromb Vasc Biol 27(1):92–98

    Article  CAS  PubMed  Google Scholar 

  57. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317

    Article  CAS  PubMed  Google Scholar 

  58. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  59. Lopes MW, Soares FM, de Mello N, Nunes JC, de Cordova FM, Walz R, Leal RB (2012) Time-dependent modulation of mitogen activated protein kinases and AKT in rat hippocampus and cortex in the pilocarpine model of epilepsy. Neurochem Res 37(9):1868–1878

    Article  CAS  PubMed  Google Scholar 

  60. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pages G, Valverde O, Marowsky A, Porrazzo A, Orban PC, Maldonado R, Ehrengruber MU, Cestari V, Lipp HP, Chapman PF, Pouyssegur J, Brambilla R (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34(5):807–820

    Article  CAS  PubMed  Google Scholar 

  61. Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R (2006) ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol 5(5):14. doi:10.1186/jbiol38

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bessard A, Fremin C, Ezan F, Fautrel A, Gailhouste L, Baffet G (2008) RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene 27(40):5315–5325. doi:10.1038/onc.2008.163

    Article  CAS  PubMed  Google Scholar 

  63. Nakazawa T, Shimura M, Ryu M, Nishida K, Pages G, Pouyssegur J, Endo S (2008) ERK1 plays a critical protective role against N-Methyl-d-aspartate-induced retinal injury. J Neurosci Res 86(1):136–144. doi:10.1002/jnr.21472

    Article  CAS  PubMed  Google Scholar 

  64. Liu L, Zhang R, Liu K, Zhou H, Tang Y, Su J, Yu X, Yang X, Tang M, Dong Q (2009) Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res 87(16):3576–3590

    Article  CAS  PubMed  Google Scholar 

  65. Beretta S, Pastori C, Sala G, Piazza F, Ferrarese C, Cattalini A, de Curtis M, Librizzi L (2011) Acute lipophilicity-dependent effect of intravascular simvastatin in the early phase of focal cerebral ischemia. Neuropharmacology 60(6):878–885

    Article  CAS  PubMed  Google Scholar 

  66. Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY (2007) Anti-inflammatory mechanism of simvastatin in mouse allergic asthma model. Eur J Pharmacol 557(1):76–86

    Article  CAS  PubMed  Google Scholar 

  67. Foran E, Trotti D (2009) Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 11(7):1587–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rao SD, Yin HZ, Weiss JH (2003) Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci 23(7):2627–2633

    CAS  PubMed  Google Scholar 

  69. Kalonia H, Kumar P, Kumar A (2011) Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats. Behav Brain Res 216(1):220–228

    Article  CAS  PubMed  Google Scholar 

  70. Carone D, Librizzi L, Cattalini A, Sala G, Conti E, Cuccione E, Versace A, Cai R, Monza L, de Curtis M, Ferrarese C, Beretta S (2015) Pravastatin acute neuroprotective effects depend on blood brain barrier integrity in experimental cerebral ischemia. Brain Res 1615:31–41

    Article  CAS  PubMed  Google Scholar 

  71. Lee SH, Choi NY, Yu HJ, Park J, Choi H, Lee KY, Huh YM, Lee YJ, Koh SH (2015) Atorvastatin protects NSC-34 motor neurons against oxidative stress by activating PI3K, ERK and free radical scavenging. Mol Neurobiol 53:695–705. doi:10.1007/s12035-014-9030-0

    Article  PubMed  Google Scholar 

  72. Yano M, Matsumura T, Senokuchi T, Ishii N, Murata Y, Taketa K, Motoshima H, Taguchi T, Sonoda K, Kukidome D, Takuwa Y, Kawada T, Brownlee M, Nishikawa T, Araki E (2007) Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ Res 100(10):1442–1451

    Article  CAS  PubMed  Google Scholar 

  73. Fukuda K, Matsumura T, Senokuchi T, Ishii N, Kinoshita H, Yamada S, Murakami S, Nakao S, Motoshima H, Kondo T, Kukidome D, Kawasaki S, Kawada T, Nishikawa T, Araki E (2015) Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-gamma activation. Biochem Biophys Res Commun 457(1):23–30

    Article  CAS  PubMed  Google Scholar 

  74. Thouennon E, Cheng Y, Falahatian V, Cawley NX, Loh YP (2015) Rosiglitazone-activated PPARgamma induces neurotrophic factor-alpha1 transcription contributing to neuroprotection. J Neurochem 134(3):463–470

    Article  CAS  PubMed  Google Scholar 

  75. Frizzo ME, Frizzo JK, Amadio S, Rodrigues JM, Perry ML, Bernardi G, Volonte C (2007) Extracellular adenosine triphosphate induces glutamate transporter-1 expression in hippocampus. Hippocampus 17(4):305–315

    Article  CAS  PubMed  Google Scholar 

  76. Lu M, Hu LF, Hu G, Bian JS (2008) Hydrogen sulfide protects astrocytes against H(2)O(2)-induced neural injury via enhancing glutamate uptake. Free Radic Biol Med 45(12):1705–1713

    Article  CAS  PubMed  Google Scholar 

  77. Mielke K, Damm A, Yang DD, Herdegen T (2000) Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. Brain Res Mol Brain Res 75(1):128–137

    Article  CAS  PubMed  Google Scholar 

  78. Harper SJ, LoGrasso P (2001) Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 13(5):299–310

    Article  CAS  PubMed  Google Scholar 

  79. Ferrer I, Blanco R, Carmona M (2001) Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Brain Res Mol Brain Res 94(1–2):48–58

    Article  CAS  PubMed  Google Scholar 

  80. Celso Constantino L, Tasca CI, Boeck CR (2014) The role of NMDA receptors in the development of brain resistance through pre- and postconditioning. Aging Dis 5(6):430–441

    PubMed  PubMed Central  Google Scholar 

  81. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiss JP, Szasz BK, Fodor L, Mike A, Lenkey N, Kurko D, Nagy J, Vizi ES (2012) GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem Int 60(2):170–176

    Article  CAS  PubMed  Google Scholar 

  83. Bosel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hortnagl H, Fink KB, Endres M (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92(6):1386–1398

    Article  PubMed  Google Scholar 

  84. Gutierrez-Vargas JA, Munoz-Manco JI, Garcia-Segura LM, Cardona-Gomez GP (2014) GluN2B N-methyl-d-aspartic acid receptor subunit mediates atorvastatin-induced neuroprotection after focal cerebral ischemia. J Neurosci Res 92(11):1529–1548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank financial support from CNPq, INCT-EN, FAPESC (NENASC Project—PRONEX—CNPq/FAPESC) and CAPES (REUNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vandresen-Filho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandresen-Filho, S., Martins, W.C., Bertoldo, D.B. et al. Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling. Neurochem Res 41, 2017–2028 (2016). https://doi.org/10.1007/s11064-016-1913-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1913-1

Keywords

Navigation