Skip to main content
Log in

ConBr, a Lectin from Canavalia brasiliensis Seeds, Protects Against Quinolinic Acid-Induced Seizures in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lectins are proteins capable of reversible binding to carbohydrates or glycoconjugates. In the central nervous system of mammals, lectins with affinity for mannose/glucose or galactose can modulate cellular communication. ConBr, a lectin isolated from the seeds of Canavalia brasiliensis, previously showed antidepressant effect in the forced swimming test in mice, with involvement of the monoaminergic system. In this study, we investigated the neuroprotective effects of ConBr against quinolinic acid (QA), a well-known NMDA agonist that produces severe neurotoxicity when administered in vivo. ConBr (10 μg/site) administered via intracerebroventricular (i.c.v.) showed a neuroprotective activity against seizures induced by QA (36.8 nmol/site; i.c.v.) when administered 15 min prior to QA, with a percentage of protection around 50%. ConBr was also able to significantly decrease the severity of the seizures but without changes in the latency of the first convulsion or the duration of the seizures. This effect was dependent on the structural integrity of the ConBr protein and its binding capacity to oligosaccharides residues. ConA, a lectin with high similarity to ConBr, did not reverse the QA-induced seizures. Moreover, ConBr was able to protect against hippocampal cell death caused by QA, which was measured by propidium iodide incorporation. QA caused activation of JNK2 and improved the phosphorylation of Ser831 and 845 on the AMPA receptor GluR1 subunit, and both of these effects were counteracted by ConBr. Our data suggest that the lectin ConBr may exert a modulatory action on NMDA receptors, which inhibits its activity in response to QA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  PubMed  CAS  Google Scholar 

  2. Breen KC, Coughlan CM, Hayes FD (1998) The role of glycoproteins in neural development function, and disease. Mol Neurobiol 16:163–220

    Article  PubMed  CAS  Google Scholar 

  3. Matthies H Jr, Kretlow J, Matthies H et al (1999) Glycosylation of proteins during a critical time window is necessary for the maintenance of long-term potentiation in the hippocampal CA1 region. Neuroscience 91:175–183

    Article  PubMed  CAS  Google Scholar 

  4. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542

    Article  PubMed  CAS  Google Scholar 

  5. Hullebroeck MF, Hampson DR (1992) Characterization of the oligosaccharide side chains on kainate binding proteins and AMPA receptors. Brain Res 590:187–192

    Article  PubMed  CAS  Google Scholar 

  6. Standley S, Baudry M (2000) The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cell Mol Life Sci 57:1508–1516

    Article  PubMed  CAS  Google Scholar 

  7. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  PubMed  CAS  Google Scholar 

  8. Foster KA, McLaughlin N, Edbauer D et al (2010) Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci 30:2676–2678

    Article  PubMed  CAS  Google Scholar 

  9. Kawamoto S, Hattori S, Sakimura K et al (1995) N Linked glycosylation of the AMPA-selective glutamate receptor channel alpha2 subunit is essential for essential for the acquisition of ligand-binding activity. J Neurochem 64:1258–1266

    Article  PubMed  CAS  Google Scholar 

  10. Laurie DJ, Bartke I, Schoepfer R et al (1997) Regional, developmental and interspecies expression of the four NMDAR2 subunits examined using monoclonal antibodies. Mol Brain Res 51:23

    Article  PubMed  CAS  Google Scholar 

  11. Cavada BS, Barbosa T, Arruda S et al (2001) Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Prot Pep Sci 2:1–13

    Article  Google Scholar 

  12. Loris R (2002) Principles of structures of animal and plant lectins. Biochim Biophys Acta 1572:198–208

    Article  PubMed  CAS  Google Scholar 

  13. Ambrosi M, Cameron NR, Davis BG (2005) Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem 3:1593–1608

    Article  PubMed  CAS  Google Scholar 

  14. Sumner JB, Howell SF (1936) Identification of hemagglutinin of Jack Bean with Concanavalin A. J Bacteriol 32:227–237

    PubMed  CAS  Google Scholar 

  15. Edelman GM, Cunningham BA, Reeke GN et al (1972) The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci USA 69:2580–2584

    Article  PubMed  CAS  Google Scholar 

  16. Hardman KD, Ainsworth CF (1972) Structure of concanavalin A at 2.4-A resolution. Biochemistry 11:4910–4919

    Article  PubMed  CAS  Google Scholar 

  17. Derewenda Z, Yariv J, Helliwell JR et al (1989) The structure of the saccharide-binding site of concanavalin A. EMBO J 8:2189–2193

    PubMed  CAS  Google Scholar 

  18. Lin SS, Levitan IB (1991) Concanavalin A: a tool to investigate neuronal plasticity. Trends Neurosci 14:273–277

    Article  PubMed  CAS  Google Scholar 

  19. Scherer WJ, Udin SB (1994) Concanavalin A reduces habituation in the tectum of the frog. Brain Res 667:209–215

    Article  PubMed  CAS  Google Scholar 

  20. Kirner A, Deutsch S, Weiler E et al (2003) Concanavalin A application to the olfactory epithelium reveals different sensory neuron populations for the odour pair D- and L-carvone. Behav Brain Res 138:201–206

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki T, Okumura-Noji K (1995) NMDA receptor subunits epsilon 1 (NR2A) and epsilon 2 (NR2B) are substrates for Fyn in the postsynaptic density fraction isolated from the rat brain. Biochem Biophys Res Commun 216:582–588

    Article  PubMed  CAS  Google Scholar 

  22. Clark RA, Gurd JW, Bissoon N et al (1998) Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: conservation of glycosylation at the synapse. J Neurochem 70:2594–2605

    Article  PubMed  CAS  Google Scholar 

  23. Partin KM, Patneau DK, Winters CA et al (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11:1069–1082

    Article  PubMed  CAS  Google Scholar 

  24. Hoffman KB, Kessler M, Ta J et al (1998) Mannose-specific lectins modulate ligand binding to AMPA-type glutamate receptors. Brain Res 795:105–111

    Article  PubMed  CAS  Google Scholar 

  25. Thalhammer A, Everts I, Hollmann M (2002) Inhibition by lectins of glutamate receptor desensitization is determined by the lectin’s sugar specificity at kainate but not AMPA receptors. Mol Cell Neurosci 21:521–533

    Article  PubMed  CAS  Google Scholar 

  26. Yue KT, MacDonald JF, Pekhletski R et al (1995) Differential effects of lectins on recombinant glutamate receptors. Eur J Pharmacol 291:229–235

    Article  PubMed  CAS  Google Scholar 

  27. Everts I, Petroski R, Kizelsztein P et al (1999) Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci 19:916–927

    PubMed  CAS  Google Scholar 

  28. Fay AM, Bowie D (2006) Concanavalin-A reports agonist-induced conformational changes in the intact GluR6 kainate receptor. J Physiol 572:201–213

    PubMed  CAS  Google Scholar 

  29. Everts I, Villmann C, Hollmann M (1997) N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol 52:861–873

    PubMed  CAS  Google Scholar 

  30. Sanz-Aparicio J, Hermoso J, Granjeiro TB et al (1997) The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Letters 405:114–118

    Article  PubMed  CAS  Google Scholar 

  31. Barauna SC, Kaster MP, Heckert BT et al (2006) Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 85:160–169

    Article  PubMed  CAS  Google Scholar 

  32. Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37:1147–1160

    Article  PubMed  CAS  Google Scholar 

  33. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  CAS  Google Scholar 

  34. Schwarcz R, Guidetti P, Sathyasaikumar KV et al (2010) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90:230–245

    Article  PubMed  CAS  Google Scholar 

  35. Tavares RG, Schmidt AP, Tasca CI et al (2008) Quinolinic acid-induced seizures stimulate glutamate uptake into synaptic vesicles from rat brain: effects prevented by guanine-based purines. Neurochem Res 33:97–102

    Article  PubMed  Google Scholar 

  36. Tavares RG, Schmidt AP, Abud J et al (2005) In vivo quinolinic acid increases synaptosomal glutamate release in rats: reversal by guanosine. Neurochem Res 30:439–444

    Article  PubMed  CAS  Google Scholar 

  37. Moreira RA, Cavada BS (1984) Lectin from Canavalia brasiliensis Mart. Isolation, characterization and behavior during germination. Biol Plant Praga Checoslov 26:113–120

    Google Scholar 

  38. Schmidt AP, Lara DR, de FariaMaraschin J et al (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43

    Article  PubMed  CAS  Google Scholar 

  39. Cruz SL, Gauthereau MY, Camacho-Munoz C et al (2003) Effects of inhaled toluene and 1, 1, 1-trichloroethane on seizures and death produced by N-methyl-d-aspartic acid in mice. Behav Brain Res 140:195–202

    Article  PubMed  CAS  Google Scholar 

  40. Marganella C, Bruno V, Matrisciano F et al (2005) Comparative effects of levobupivacaine and racemic bupivacaine on excitotoxic neuronal death in culture and N-methyl-D-aspartate-induced seizures in mice. Eur J Pharmacol 518:111–115

    Article  PubMed  CAS  Google Scholar 

  41. Cordova FM, Rodrigues AL, Giacomelli MB et al (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998:65–72

    Article  PubMed  CAS  Google Scholar 

  42. Molz S, Decker H, Dal-Cim T et al (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33:27–36

    Article  PubMed  CAS  Google Scholar 

  43. Boeck CR, Ganzella M, Lottermann A et al (2004) NMDA preconditioning protects against seizures and hippocampal neurotoxicity induced by quinolinic acid in mice. Epilepsia 45:745–750

    Article  PubMed  CAS  Google Scholar 

  44. Oliveira CS, Rigon AP, Leal RB et al (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 26:355–362

    Article  PubMed  CAS  Google Scholar 

  45. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  46. Bjerrum OJ, Heegaard NHH (1988) CRC handbook of immunoblotting of proteins, vol I: Technical Descriptions. CRC Press, Boca Raton, FL

  47. Rigon AP, Cordova FM, Oliveira CS et al (2008) Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK. Neurotoxicology 29:727–734

    Article  PubMed  CAS  Google Scholar 

  48. Posser T, de Aguiar CB, Garcez RC et al (2007) Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38(MAPK) and JNK1/2 but not of ERK1/2. Arch Toxicol 81:407–414

    Article  PubMed  CAS  Google Scholar 

  49. Ferrer I, Blanco R, Carmona M (2001) Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mol Brain Res 94:48–58

    Article  PubMed  CAS  Google Scholar 

  50. Pierozan P, Zamoner A, Soska AK et al (2010) Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 224:188–196

    Article  PubMed  CAS  Google Scholar 

  51. Bento CAM, Cavada BS, Oliveira JTA et al (1993) Rat paw edema and leucocyte migration induced by plant lectins. Agents Actions 38:48–54

    Article  PubMed  CAS  Google Scholar 

  52. Rodriguez D, Cavada BS, Abreu-de-Oliveira JT et al (1992) Differences in macrophage stimulation and leukocyte accumulation in response to intraperitoneal administration of glucose/mannose-binding plant lectins. Braz J Med Biol Res 25:823–826

    PubMed  CAS  Google Scholar 

  53. Barbosa T, Arruda S, Cavada B et al (2001) In vivo lymphocyte activation and apoptosis by lectins of the diocleinaesubtribo. Mem Inst Oswaldo Cruz 96:673–678

    Article  PubMed  CAS  Google Scholar 

  54. Ferreira RR, Cavada BS, Moreira RA et al (1996) Characteristics of the histamine release from hamster cheek pouch mast cells stimulated by lectins from Brazilian beans and concanavalin A. Inflamm Res 45:442–447

    Article  PubMed  CAS  Google Scholar 

  55. Lopes FC, Cavada BS, Pinto VP et al (2005) Differential effect of plant lectins on mast cells of different origins. Braz J Med Biol Res 38:935–941

    Article  PubMed  CAS  Google Scholar 

  56. Andrade JL, Arruda S, Barbosa T et al (1999) Lectin-induced nitric oxide production. Cell Immunol 194:98–102

    Article  PubMed  CAS  Google Scholar 

  57. Pemberton KE, Belcher SM, Ripellino JA, et.al. (1998) High-affinity kainate-type ion channels in rat cerebellar granule cells. J Physiol 510(Pt 2):401–420

    Google Scholar 

  58. Machaidze GG, Mikeladze D (2001) Different effects of lectins on the ligand binding of the NMDA receptors and sigma sites in rat brain hippocampus synaptic membranes. Neurochem Res 26:457–462

    Article  PubMed  CAS  Google Scholar 

  59. Lapin IP (1978) Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J Neural Trans 42:37–43

    Article  CAS  Google Scholar 

  60. Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72:411–412

    Article  PubMed  CAS  Google Scholar 

  61. Kuroki Y, Fukushima K, Kanda Y, Mizuno K, Watanabe Y (2001) Neuroprotection by estrogen via extracellular signal-regulated kinase against quinolinic acid-induced cell death in the rat hippocampus. Eur J Neurosci 13:472–476

    Article  PubMed  CAS  Google Scholar 

  62. Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, Herdegen T (2005) Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21:363–377

    Article  PubMed  Google Scholar 

  63. Zhao Y, Herdegen T (2009) Cerebral ischemia provokes a profound exchange of activated JNK isoforms in brain mitochondria. Mol Cell Neurosci 41:186–195

    Article  PubMed  CAS  Google Scholar 

  64. Waetzig V, Zhao Y, Herdegen T (2006) The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 80:84–97

    Article  PubMed  CAS  Google Scholar 

  65. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  PubMed  CAS  Google Scholar 

  66. Santos SD, Carvalho AL, Caldeira MV et al (2009) Regulation of AMPA receptors and synaptic plasticity. Neuroscience 158:105–125

    Article  PubMed  CAS  Google Scholar 

  67. Zanetta JP, Meyer A, Kuchler S et al (1987) Isolation and immunochemical study of a soluble cerebellar lectin delineating its structure and function. J Neurochem 49:1250–1257

    Article  PubMed  CAS  Google Scholar 

  68. Marschal P, Reeber A, Neeser JR et al (1989) Carbohydrate and glycoprotein specificity of two endogenous cerebellar lectins. Biochimie 71:645–653

    Article  PubMed  CAS  Google Scholar 

  69. Lehmann S, Kuchler S, Theveniau M et al (1990) An endogenous lectin and one of its neuronal glycoprotein ligands are involved in contact guidance of neuron migration. Proc Natl Acad Sci USA 87:6455–6459

    Article  PubMed  CAS  Google Scholar 

  70. Kuchler S, Lehmann S, Vincendon G et al (1992) Endogenous lectin cerebellar soluble lectin involved in myelination is absent from nonmyelinating Schwann cells. J Neurochem 58:1768–1772

    Article  PubMed  CAS  Google Scholar 

  71. Lekishvili T, Hesketh S, Brazier MW et al (2006) Mouse galectin-1 inhibits the toxicity of glutamate by modifying NR1 NMDA receptor expression. Eur J Neurosci 24:3017–3025

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

CNPq (#305194/2010-0), CAPES/PROCAD (#167/2007), CAPES/DGU (#173/2008), FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net; #01.06.0842-00”) and FAPESC (# 6336/2011-3) supported this work. EHT, BSC, CIT and RBL are recipients of CNPq fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo B. Leal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russi, M.A., Vandresen-Filho, S., Rieger, D.K. et al. ConBr, a Lectin from Canavalia brasiliensis Seeds, Protects Against Quinolinic Acid-Induced Seizures in Mice. Neurochem Res 37, 288–297 (2012). https://doi.org/10.1007/s11064-011-0608-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0608-x

Keywords

Navigation