Skip to main content

Advertisement

Log in

Time-Dependent Modulation of Mitogen Activated Protein Kinases and AKT in Rat Hippocampus and Cortex in the Pilocarpine Model of Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The epileptogenesis may involve a variety of signaling events that culminate with synaptic reorganization. Mitogen-activated protein kinases (MAPKs) and AKT may be activated by diverse stimulus including neurotransmitter, oxidative stress, growth factors and cytokines and are involved in synaptic plasticity in the hippocampus and cerebral cortex. The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans. We analyze the phosphorylation profile of MAPKs (ERK1/2, p38MAPK, JNK1/2/3) and AKT by western blotting in the hippocampus (Hip) and cortex (Ctx) of male adult wistar rats in different periods, after pilocarpine induced status epilepticus (Pilo-SE) and compared with control animals. Biochemical analysis were done in the Hip and Ctx at 1, 3, 12 h (acute period), 5 days (latent period) and 50 days (chronic period) after Pilo-SE onset. Hence, the main findings include increased phosphorylation of ERK1 and p38MAPK in the Hip and Ctx 1 and 12 h after the Pilo-SE onset. The JNK2/3 isoform (54 kDa) phosphorylation was decreased at 3 h after the Pilo-SE onset and in the chronic period in the Hip and Ctx. The AKT phosphorylation increased only in the Hip during the latent period. Our study demonstrates, in a systematic manner, the profile of MAPKs and AKT modulation in the hippocampus and cerebral cortex in response to pilocarpine. Based in the role of each signaling enzyme is possible that these changes may be related, at least partially, to modifications in the intrinsic neuronal physiology and epileptogenic synaptic network that appears in the MTLE-HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16(2):165–170

    Article  PubMed  Google Scholar 

  2. Dichter MA (1994) Emerging insights into mechanisms of epilepsy: implications for new antiepileptic drug development. Epilepsia 35(Suppl 4):S51–S57

    Article  PubMed  Google Scholar 

  3. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367(9516):1087–1100

    Article  PubMed  Google Scholar 

  4. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA—gated glutamate receptor channels depends on subunit composition. Science 252(5007):851–853

    Article  PubMed  CAS  Google Scholar 

  5. Babb TL (1999) Synaptic reorganizations in human and rat hippocampal epilepsy. Adv Neurol 79:763–779

    PubMed  CAS  Google Scholar 

  6. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32(6):778–782

    Article  PubMed  CAS  Google Scholar 

  7. Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35(1):1–11

    Article  PubMed  CAS  Google Scholar 

  8. Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34(6):985–995

    Article  PubMed  CAS  Google Scholar 

  9. Costa MS, Rocha JB, Perosa SR, Cavalheiro EA, Naffah-Mazzacoratti Mda G (2004) Pilocarpine-induced status epilepticus increases glutamate release in rat hippocampal synaptosomes. Neurosci Lett 356(1):41–44

    Article  PubMed  CAS  Google Scholar 

  10. Houser CR, Huang CS, Peng Z (2008) Dynamic seizure-related changes in extracellular signal-regulated kinase activation in a mouse model of temporal lobe epilepsy. Neuroscience 156(1):222–237

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Peng Z, Xiao B, Houser CR (2010) Activation of ERK by spontaneous seizures in neural progenitors of the dentate gyrus in a mouse model of epilepsy. Exp Neurol 224(1):133–145

    Article  PubMed  CAS  Google Scholar 

  12. Nebreda AR, Porras A (2000) p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25(6):257–260

    Article  PubMed  CAS  Google Scholar 

  13. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912

    Article  PubMed  CAS  Google Scholar 

  14. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396–405

    PubMed  CAS  Google Scholar 

  15. Jerusalinsky D, Ferreira MB, Walz R, Da Silva RC, Bianchin M, Ruschel AC, Zanatta MS, Medina JH, Izquierdo I (1992) Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behav Neural Biol 58(1):76–80

    Article  PubMed  CAS  Google Scholar 

  16. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76(1):1–10

    Article  PubMed  CAS  Google Scholar 

  17. Runchel C, Matsuzawa A, Ichijo H (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 15(1):205–218

    Article  PubMed  CAS  Google Scholar 

  18. Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 94(13):7041–7046

    Article  PubMed  CAS  Google Scholar 

  19. Cammarota M, Bernabeu R, Levi De Stein M, Izquierdo I, Medina JH (1998) Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur J Neurosci 10(8):2669–2676

    Article  PubMed  CAS  Google Scholar 

  20. Bernabeu R, Izquierdo I, Cammarota M, Jerusalinsky D, Medina JH (1995) Learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to protein kinase C in selected regions of the rat brain. Brain Res 685(1–2):163–168

    Article  PubMed  CAS  Google Scholar 

  21. Walz R, Roesler R, Quevedo J, Sant’Anna MK, Madruga M, Rodrigues C, Gottfried C, Medina JH, Izquierdo I (2000) Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase inhibitor into cortical and limbic structures. Neurobiol Learn Mem 73(1):11–20

    Article  PubMed  CAS  Google Scholar 

  22. Sanderson JL, Dell’Acqua ML (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17(3):321–336

    Article  PubMed  CAS  Google Scholar 

  23. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  PubMed  CAS  Google Scholar 

  24. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101(8):2449–2476

    Article  PubMed  CAS  Google Scholar 

  25. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

    Article  PubMed  CAS  Google Scholar 

  26. Kim YS, Hong KS, Seong YS, Park JB, Kuroda S, Kishi K, Kaibuchi K, Takai Y (1994) Phosphorylation and activation of mitogen-activated protein kinase by kainic acid-induced seizure in rat hippocampus. Biochem Biophys Res Commun 202(2):1163–1168

    Article  PubMed  CAS  Google Scholar 

  27. Garrido YC, Sanabria ER, Funke MG, Cavalheiro EA, Naffah-Mazzacoratti MG (1998) Mitogen-activated protein kinase is increased in the limbic structures of the rat brain during the early stages of status epilepticus. Brain Res Bull 47(3):223–229

    Article  PubMed  CAS  Google Scholar 

  28. Berkeley JL, Decker MJ, Levey AI (2002) The role of muscarinic acetylcholine receptor-mediated activation of extracellular signal-regulated kinase 1/2 in pilocarpine-induced seizures. J Neurochem 82(1):192–201

    Article  PubMed  CAS  Google Scholar 

  29. Baraban JM, Fiore RS, Sanghera JS, Paddon HB, Pelech SL (1993) Identification of p42 mitogen-activated protein kinase as a tyrosine kinase substrate activated by maximal electroconvulsive shock in hippocampus. J Neurochem 60(1):330–336

    Article  PubMed  CAS  Google Scholar 

  30. Bhat RV, Engber TM, Finn JP, Koury EJ, Contreras PC, Miller MS, Dionne CA, Walton KM (1998) Region-specific targets of p42/p44MAPK signaling in rat brain. J Neurochem 70(2):558–571

    Article  PubMed  CAS  Google Scholar 

  31. Gass P, Kiessling M, Bading H (1993) Regionally selective stimulation of mitogen activated protein (MAP) kinase tyrosine phosphorylation after generalized seizures in the rat brain. Neurosci Lett 162(1–2):39–42

    Article  PubMed  CAS  Google Scholar 

  32. Brisman JL, Rees Cosgrove G, Cole AJ (2002) Phosphorylation of P42/P44 MAP kinase and DNA fragmentation in the rat perforant pathway stimulation model of limbic epilepsy. Brain Res 933(1):50–59

    Article  PubMed  CAS  Google Scholar 

  33. Jiang W, Van Cleemput J, Sheerin AH, Ji SP, Zhang Y, Saucier DM, Corcoran ME, Zhang X (2005) Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance. J Neurosci Res 81(4):581–588

    Article  PubMed  CAS  Google Scholar 

  34. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29(5):233–242

    Article  PubMed  CAS  Google Scholar 

  35. Crossthwaite AJ, Hasan S, Williams RJ (2002) Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca(2+) and PI3-kinase. J Neurochem 80(1):24–35

    Article  PubMed  CAS  Google Scholar 

  36. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11(3):297–305

    Article  PubMed  CAS  Google Scholar 

  37. Goto EM, Silva Mde P, Perosa SR, Arganaraz GA, Pesquero JB, Cavalheiro EA, Naffah-Mazzacoratti MG, Teixeira VP, Silva JA Jr (2010) Akt pathway activation and increased neuropeptide Y mRNA expression in the rat hippocampus: implications for seizure blockade. Neuropeptides 44(2):169–176

    Article  PubMed  CAS  Google Scholar 

  38. Oxbury JM, Whitty CW (1971) Causes and consequences of status epilepticus in adults. A study of 86 cases. Brain 94(4):733–744

    Article  PubMed  CAS  Google Scholar 

  39. Millan MH, Chapman AG, Meldrum BS (1993) Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res 14(2):139–148

    Article  PubMed  CAS  Google Scholar 

  40. Gary DS, Milhavet O, Camandola S, Mattson MP (2003) Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J Neurochem 84(4):878–890

    Article  PubMed  CAS  Google Scholar 

  41. Bonan CD, Walz R, Pereira GS, Worm PV, Battastini AM, Cavalheiro EA, Izquierdo I, Sarkis JJ (2000) Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy. Epilepsy Res 39(3):229–238

    Article  PubMed  CAS  Google Scholar 

  42. Leal RB, Cordova FM, Herd L, Bobrovskaya L, Dunkley PR (2002) Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 178(1):44–51

    Article  PubMed  CAS  Google Scholar 

  43. Cordova FM, Rodrigues AL, Giacomelli MB, Oliveira CS, Posser T, Dunkley PR, Leal RB (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998(1):65–72

    Article  PubMed  CAS  Google Scholar 

  44. Posser T, de Aguiar CB, Garcez RC, Rossi FM, Oliveira CS, Trentin AG, Neto VM, Leal RB (2007) Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38(MAPK) and JNK1/2 but not of ERK1/2. Arch Toxicol 81(6):407–414

    Article  PubMed  CAS  Google Scholar 

  45. Oliveira CS, Rigon AP, Leal RB, Rossi FM (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 26(3–4):355–362

    Article  PubMed  CAS  Google Scholar 

  46. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356

    Article  PubMed  CAS  Google Scholar 

  47. Calloni GW, Penno CA, Cordova FM, Trentin AG, Neto VM, Leal RB (2005) Congenital hypothyroidism alters the phosphorylation of ERK1/2 and p38MAPK in the hippocampus of neonatal rats. Brain Res Dev Brain Res 154(1):141–145

    Article  PubMed  CAS  Google Scholar 

  48. McCubrey JA, Lahair MM, Franklin RA (2006) Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal 8(9–10):1775–1789

    Article  PubMed  CAS  Google Scholar 

  49. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290

    Article  PubMed  CAS  Google Scholar 

  50. Parcellier A, Tintignac LA, Zhuravleva E, Hemmings BA (2008) PKB and the mitochondria: AKTing on apoptosis. Cell Signal 20(1):21–30

    Article  PubMed  CAS  Google Scholar 

  51. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317

    Article  PubMed  CAS  Google Scholar 

  52. Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417

    Article  PubMed  CAS  Google Scholar 

  53. Takeda K, Ichijo H (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7(11):1099–1111

    Article  PubMed  CAS  Google Scholar 

  54. Murray B, Alessandrini A, Cole AJ, Yee AG, Furshpan EJ (1998) Inhibition of the p44/42 MAP kinase pathway protects hippocampal neurons in a cell-culture model of seizure activity. Proc Natl Acad Sci USA 95(20):11975–11980

    Article  PubMed  CAS  Google Scholar 

  55. Kim SW, Yu YM, Piao CS, Kim JB, Lee JK (1007) Inhibition of delayed induction of p38 mitogen-activated protein kinase attenuates kainic acid-induced neuronal loss in the hippocampus. Brain Res 1007(1–2):188–191

    Google Scholar 

  56. Lothman EW, Bertram EH 3rd (1993) Epileptogenic effects of status epilepticus. Epilepsia 34(Suppl 1):S59–S70

    Article  PubMed  Google Scholar 

  57. Wasterlain CG, Fujikawa DG, Penix L, Sankar R (1993) Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34(Suppl 1):S37–S53

    Article  PubMed  Google Scholar 

  58. Hopkins KJ, Wang G, Schmued LC (2000) Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res 864(1):69–80

    Article  PubMed  CAS  Google Scholar 

  59. Sutula TP, Hagen J, Pitkanen A (2003) Do epileptic seizures damage the brain? Curr Opin Neurol 16(2):189–195

    Article  PubMed  Google Scholar 

  60. Rakhade SN, Loeb JA (2008) Focal reduction of neuronal glutamate transporters in human neocortical epilepsy. Epilepsia 49(2):226–236

    Article  PubMed  CAS  Google Scholar 

  61. Haddad JJ (2005) N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 77(4):252–282

    Article  PubMed  CAS  Google Scholar 

  62. Cooper DM (2003) Molecular and cellular requirements for the regulation of adenylate cyclases by calcium. Biochem Soc Trans 31(Pt 5):912–915

    Article  PubMed  CAS  Google Scholar 

  63. Mohit AA, Martin JH, Miller CA (1995) p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. Neuron 14(1):67–78

    Article  PubMed  CAS  Google Scholar 

  64. Pollard H, Khrestchatisky M, Moreau J, Ben-Ari Y, Represa A (1994) Correlation between reactive sprouting and microtubule protein expression in epileptic hippocampus. Neuroscience 61(4):773–787

    Article  PubMed  CAS  Google Scholar 

  65. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  PubMed  CAS  Google Scholar 

  66. Shi Y, Gaestel M (2002) In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem 383(10):1519–1536

    Article  PubMed  CAS  Google Scholar 

  67. Kirschstein T, Mikkat S, Mikkat U, Bender R, Kreutzer M, Schulz R, Kohling R, Glocker MO (2012) The 27-kDa heat shock protein (HSP27) is a reliable hippocampal marker of full development of pilocarpine-induced status epilepticus. Epilepsy Res 98(1):35–43

    Article  PubMed  CAS  Google Scholar 

  68. Bidmon HJ, Gorg B, Palomero-Gallagher N, Schleicher A, Haussinger D, Speckmann EJ, Zilles K (2008) Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia 49(10):1733–1748

    Article  PubMed  CAS  Google Scholar 

  69. Lively S, Brown IR (2008) Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 107(5):1335–1346

    Article  PubMed  CAS  Google Scholar 

  70. Bidmon HJ, Gorg B, Palomero-Gallagher N, Behne F, Lahl R, Pannek HW, Speckmann EJ, Zilles K (2004) Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy. Epilepsia 45(12):1549–1559

    Article  PubMed  CAS  Google Scholar 

  71. Jabs R, Seifert G, Steinhauser C (2008) Astrocytic function and its alteration in the epileptic brain. Epilepsia 49(Suppl 2):3–12

    Article  PubMed  CAS  Google Scholar 

  72. Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, Herdegen T (2005) Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21(2):363–377

    Article  PubMed  Google Scholar 

  73. Zhao Y, Herdegen T (2009) Cerebral ischemia provokes a profound exchange of activated JNK isoforms in brain mitochondria. Mol Cell Neurosci 41(2):186–195

    Article  PubMed  CAS  Google Scholar 

  74. Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB (2012) ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 37(2):288–297

    Article  PubMed  CAS  Google Scholar 

  75. Waetzig V, Zhao Y, Herdegen T (2006) The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 80(2):84–97

    Article  PubMed  CAS  Google Scholar 

  76. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157

    Article  PubMed  CAS  Google Scholar 

  77. Shinoda S, Schindler CK, Meller R, So NK, Araki T, Yamamoto A, Lan JQ, Taki W, Simon RP, Henshall DC (2004) Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J Clin Invest 113(7):1059–1068

    PubMed  CAS  Google Scholar 

  78. Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B, Birnbaum MJ, Chao MV (2002) Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 35(4):697–709

    Article  PubMed  CAS  Google Scholar 

  79. Neary JT, Kang Y, Shi YF (2004) Signaling from nucleotide receptors to protein kinase cascades in astrocytes. Neurochem Res 29(11):2037–2042

    Article  PubMed  CAS  Google Scholar 

  80. Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M (2009) MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) 292(12):1902–1913

    Article  CAS  Google Scholar 

  81. Bading H, Greenberg ME (1991) Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253(5022):912–914

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), IBN.Net/CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Projeto CAPES/PROCAD, Fundação de Apoio à Pesquisa Cientifica e Tecnológica do Estado de Santa Catarina (FAPESC-PRONEX), (Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina—NENASC). Universidade Federal de Santa Catarina (UFSC).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bainy Leal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, M.W., Soares, F.M.S., de Mello, N. et al. Time-Dependent Modulation of Mitogen Activated Protein Kinases and AKT in Rat Hippocampus and Cortex in the Pilocarpine Model of Epilepsy. Neurochem Res 37, 1868–1878 (2012). https://doi.org/10.1007/s11064-012-0797-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0797-y

Keywords

Navigation