Skip to main content

Advertisement

Log in

Atorvastatin Prevents Hippocampal Cell Death due to Quinolinic Acid-Induced Seizures in Mice by Increasing Akt Phosphorylation and Glutamate Uptake

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Statins are cholesterol-lowering agents due to the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Recent studies have shown statins possess pleiotropic effects, which appear to be independent from its cholesterol-lowering action. In this study, we investigated whether atorvastatin would have protective effects against hippocampal cell death promoted by quinolinic acid (QA)-induced seizures in mice. Mice were pretreated with Atorvastatin (1 or 10 mg/kg) or vehicle (saline, 0.9%), orally, once a day for 7 days before the intracerebroventricular (i.c.v.) QA infusion (36.8 nmol/site). Atorvastatin treatment with 1 mg/kg/day did not significantly prevent QA-induced seizures (13.34%). However, administration of atorvastatin 10 mg/kg/day prevented the clonic and/or tonic seizures induced by QA in 29.41% of the mice. Additionally, administration of atorvastatin 10 mg/kg/day significantly prevented QA-induced cell death in the hippocampus. Atorvastatin treatment promoted an increased Akt phosphorylation, which was sustained after QA infusion in both convulsed and non-convulsed mice. Moreover, atorvastatin pretreatment prevented the reduction in glutamate uptake into hippocampal slices induced by QA i.c.v. infusion. These results show that atorvastatin attenuated QA-induced hippocampal cellular death involving the Akt pathway and glutamate transport modulation. Therefore, atorvastatin treatment might be a useful strategy in the prevention of brain injury caused by the exacerbation of glutamatergic toxicity in neurological diseases such as epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

i.c.v.:

Intracerebroventricular

MTT:

3-(4,5-Dimethylthiazol-2-yl-diphenyltetrazolium bromide

NMDA:

N-Methyl-D-aspartate

PI:

Propidium iodide

QA:

Quinolinic acid, 2,3-pyridine dicarboxylic acid

References

  • Boeck CR, Ganzella M, Lottermann A, Vendite D (2004) NMDA preconditioning protects against seizures and hippocampal neurotoxicity induced by quinolinic acid in mice. Epilepsia 45:745–750

    Article  PubMed  CAS  Google Scholar 

  • Boeck CR, Ganzella M, Decker H, Vendite D, Leal RB, Tasca CI (2005) NMDA preconditioning protects mice hippocampal against necrotic cellular death induced by quinolinic acid: P80. J Neurochem 94:48

    Google Scholar 

  • Bösel J, Gandor F, Harms C, Synowitz M, Harms U, Djoufack PC, Megow D, Dirnagl U, Hörtnag H, Fink KB, Endres M (2005) Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J Neurochem 92:1386–1398

    Article  PubMed  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, Zhang C, Lu M, Katakowski M, Feldkamp CS, Chopp M (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 6:743–751

    Article  Google Scholar 

  • Chen G, Wei L, Zhi-dan S, Shi-guang Z, Xiang-zhen L (2009) Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci 10:7–17

    Article  Google Scholar 

  • Clarke RM, O’Connell F, Lyons A, Lynch MA (2007) The HMG-CoA Reductase inhibitor, atorvastatin, atenuates the efeccts of acute administration of amyloide-B(1–42) in the rat hippocampus in vivo. Neuropharmacology 1:136–145

    Article  Google Scholar 

  • Cordle A, Landreth G (2005) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses. J Neurosci 2:299–307

    Article  Google Scholar 

  • De Oliveira DL, Horn JF, Rodrigues JM, Frizzo ME, Moriguchi E, Souza DO, Wofchuk S (2004) Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: reversal by orally administered guanosine. Brain Res 1018:48–54

    Article  PubMed  Google Scholar 

  • Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 95:8880–8885

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M (2001) Differential expression of active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor following quinolinic acid excitotoxicity in the rat. Mol Brain Res 94:48–58

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Collins JF, Schwarcz R (1983) On the excitotoxic properties of quinolinic acid, 2, 3-piperidine dicarboxylic acids and structurally related compounds. Neuropharmacology 12A:1331–1342

    Article  Google Scholar 

  • Ganzella M, Jardim FM, Boeck CR, Vendite D (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55:397–402

    Article  PubMed  CAS  Google Scholar 

  • Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6:358–370

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Hamakawa K, Nagotani S, Jin G, Li F, Deguchi K, Sehara Y, Zhang H, Nagano I, Shoji M, Abe K (2005) HMG CoA reductase inhibitors reduce ischemic brain injury of Wistar rats through decreasing oxidative stress on neurons. Brain Res 1037:52–58

    Article  PubMed  CAS  Google Scholar 

  • Hering H, Lin CC, Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23:3262–3271

    PubMed  CAS  Google Scholar 

  • Heyes MP, Rubinow D, Lane C, Markey SP (1989) Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann Neurol 26:275–277

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Wyler AR, Devinsky O, Yergey JA, Markey SP, Nadi NS (1990) Quinolinic acid concentrations in brain and cerebrospinal fluid of patients with intractable complex partial seizures. Epilepsia 31:172–177

    PubMed  CAS  Google Scholar 

  • Kim D, Chung J (2002) Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol 35:106–115

    PubMed  CAS  Google Scholar 

  • Kretz A, Schmeer C, Tausch S, Isenmann S (2006) Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol Dis 2:421–430

    Article  Google Scholar 

  • Lapin IP (1981) Kynurenines and seizures. Epilepsia 3:257–265

    Article  Google Scholar 

  • Laufs U, Gertz K, Huang P, Nickenig G, Böhm M, Dirnagl U, Endres M (2000) Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31:2442–2449

    PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, Park JE, Hong NH, Im WS, Kang L, Han Z, Jung KH, Kim MW, Kim M (2008a) Atorvastatin attenuates mitochondrial toxin-induced striatal degeneration, with decreasing iNOS/c-Jun levels and activating ERK/Akt pathways. J Neurochem 104:1190–1200

    Article  PubMed  CAS  Google Scholar 

  • Lee J-K, Wong J-S, Singh AK, Singh I (2008b) Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 440:260–264

    Article  PubMed  CAS  Google Scholar 

  • Leipnitz G, Schumacher C, Scussiato K, Dalcin KB, Wannmacher CM, Wyse AT, Dutra-Filho CS, Wajner M, Latini A (2005) Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. Int J Del Neurosci 23:695–701

    Article  CAS  Google Scholar 

  • Lowry OH, Rosembrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lu D, Goussev A, Chen J, Pannu P, Li Y, Mahmod A, Chopp M (2004) Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21:21–32

    Article  PubMed  Google Scholar 

  • Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, Mahmood A, Chen J, Li Y, Chopp M (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    Article  PubMed  Google Scholar 

  • Miida T, Hirayama S, Nakamura Y (2004) Cholesterol-independent effects of statins and new therapeutic targets: ischemic stroke and dementia. J Atheroscler Thromb 11:253–264

    PubMed  CAS  Google Scholar 

  • Molz S, Decker H, Oliveira IJ, Souza DO, Tasca CI (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevented by GMP. Neurochem Res 1:83–89

    Article  Google Scholar 

  • Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI (2008) Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 33:27–36

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Nakao T, Shiota M, Tatemoto Y, Izumi Y, Iwao H (2007) Pravastatin induces rat aortic endothelial cell proliferation and migration via activation of PI3K/Akt/mTOR/p70 S6 kinase signaling. J Pharmacol Sci 105:334–341

    Article  PubMed  CAS  Google Scholar 

  • Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S (2006) The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? J Neurochem 98:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Patassini S, Giampà C, Martorana A, Bernardi G, Fuscoa FR (2008) Effects of simvastatin on neuroprotection and modulation of Bcl-2 and BAX in the rat quinolinic acid model of Huntington’s disease. Neurosci Lett 448:166–169

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Pharmacol Exp Ther 226:551–557

    PubMed  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Piamsomboon C, Laothavorn P, Saguanwong S, Chatlaong B, Nasawadi C, Tanprasert P, Pongsiri K (2002) Efficacy and safety of atorvastatin 10 mg every other day in hypercholesterolemia. J Med Assoc Thai 85:297–300

    PubMed  Google Scholar 

  • Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Dávalos A, Gasull T (2008) Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke 39:1269–1275

    Article  PubMed  CAS  Google Scholar 

  • Rangel P, Cysneiros RM, Arida RM, de Albuquerque M, Colugnati DB, Scorza CA, Cavalheiro EA, Scorza FA (2005) Lovastatin reduces neuronal cell death in hippocampal CA1 subfield after pilocarpine-induced status epilepticus: preliminary results. Arq Neuropsiquiatr 4:972–976

    Google Scholar 

  • Rikitake Y, Liao JK (2005) Rho GTPases, statins, and nitric oxide. Circ Res 97:1232–1235

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AP, Lara DR, Marahin JF, Perla AS, Souza DO (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43

    Article  PubMed  CAS  Google Scholar 

  • Sims KD, Straff DJ, Robinson MB (2000) Platelet-derived growth factor rapidly increases activity and cell surface expression of the EAAC1 subtype of glutamate transporter through activation of phosphatidylinositol 3-kinase. J Biol Chem 275:5228–5237

    Article  PubMed  CAS  Google Scholar 

  • Stepień K, Tomaszewski M, Czuczwar SJ (2005) Neuroprotective properties of statins. Pharmacol Rep 57:561–569

    PubMed  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    PubMed  CAS  Google Scholar 

  • Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 64:185–218

    Article  PubMed  CAS  Google Scholar 

  • Tavares RG, Tasca CI, Santos CE, Wajner M, Souza DO, Dutra-Filho CS (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport 11:249–253

    Article  PubMed  CAS  Google Scholar 

  • Tavares RG, Tasca CI, Santos CE, Alves LB, Porciúncula LO, Emanuelli T, Souza DO (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int 40:621–627

    Article  PubMed  CAS  Google Scholar 

  • Tavares RG, Schmidt AP, Tasca CI, Souza DO (2008) Quinolinic acid-induced seizures stimulate glutamate uptake into synaptic vesicles from rat brain: effects prevented by guanine-based purines. Neurochem Res 33:97–102

    Article  PubMed  Google Scholar 

  • Torres GE, Amara SG (2007) Glutamate and monoamine transporters: new visions of form and function. Curr Opin Neurobiol 17:304–312

    Article  PubMed  CAS  Google Scholar 

  • Wallis RA, Panizzon K (2005) Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors provides protection against depolarization to CA1 pyramidal neurons in rat hippocampal slices. Epilepsia 46(Suppl. 8):128

    Google Scholar 

  • Waters DD (2005) Safety of high-dose atorvastatin therapy. Am J Cardiol 96:69F–75F

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Lu D, Jiang H, Xiong Y, Qu C, Li B, Mahmood A, Zhou D, Chopp M (2008) Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg 109:691–698

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M (2003) Potential role of statins in inflammation and atherosclerosis. J Atheroscler Thromb 10:140–144

    PubMed  CAS  Google Scholar 

  • Yrjänheikki J, Koistinaho J, Kettunen M, Kauppinen RA, Appel K, Hüll M, Fiebich BL (2005) Long-term protective effect of atorvastatin in permanent focal cerebral ischemia. Brain Res 1052:174–179

    Article  PubMed  Google Scholar 

  • Zacco A, Togo J, Spence K, Ellis A, Lloyd D, Furlong S, Piser T (2003) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 35:11104–11111

    Google Scholar 

  • Zhang L, Zhang ZG, Liu XS, Hozeska-Solgot A, Chopp M (2007) The PI3K/Akt pathway mediates the neuroprotective effect of atorvastatin in extending thrombolytic therapy after embolic stroke in the rat. Arterioscler Thromb Vasc Biol 27:2470–2475

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq, FAPESC, and FINEP-IBN(Net) # 01.06.0842-00 to C.I.Tasca. C. I. T. is recipient of CNPq productivity fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla I. Tasca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piermartiri, T.C.B., Vandresen-Filho, S., de Araújo Herculano, B. et al. Atorvastatin Prevents Hippocampal Cell Death due to Quinolinic Acid-Induced Seizures in Mice by Increasing Akt Phosphorylation and Glutamate Uptake. Neurotox Res 16, 106–115 (2009). https://doi.org/10.1007/s12640-009-9057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9057-6

Keywords

Navigation