Skip to main content

Advertisement

Log in

Atorvastatin Prevents Cognitive Deficits Induced by Intracerebroventricular Amyloid-β1–40 Administration in Mice: Involvement of Glutamatergic and Antioxidant Systems

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Deposition of amyloid-β (Aβ) peptides into specific encephalic structures has been pointed as an important event related to Alzheimer’s disease pathogenesis and associated with activation of glial cells, neuroinflammation, oxidative responses, and cognitive deficits. Aβ-induced pro-oxidative damage may regulate the activity of glutamate transporters, leading to reduced glutamate uptake and, as a consequence, excitotoxic events. Herein, we evaluated the effects of the pretreatment of atorvastatin, a HMG-CoA reductase inhibitor, on behavioral and biochemical alterations induced by a single intracerebroventricular (i.c.v.) injection of aggregated Aβ1–40 in mice. Atorvastatin (10 mg/kg/day, p.o.) was administered through seven consecutive days before Aβ1–40 administration. Aβ1–40 caused significant cognitive impairment in the object-place recognition task (2 weeks after the i.c.v. injection) and this phenomenon was abolished by atorvastatin pretreatment. Ex vivo evaluation of glutamate uptake into hippocampal and cerebral cortices slices showed atorvastatin, and Aβ1–40 decreased hippocampal and cortical Na+-dependent glutamate uptake. However, Aβ1–40 increased Na+-independent glutamate uptake and it was prevented by atorvastatin in prefrontal cortex slices. Moreover, Aβ1–40 treatment significantly increased the cerebrocortical activities of glutathione reductase and glutathione peroxidase and these events were blunted by atorvastatin pretreatment. Reduced or oxidized glutathione levels were not altered by Aβ1–40 and/or atorvastatin treatment. These results extend the notion of the protective action of atorvastatin against neuronal toxicity induced by Aβ1–40 demonstrating that a pretreatment with atorvastatin prevents the spatial learning and memory deficits induced by Aβ in rodents and promotes changes in glutamatergic and antioxidant systems mainly in prefrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid-β

AD:

Alzheimer’s disease

EAATs:

Excitatory aminoacids transporters

GLAST, GLT-1:

Glial glutamate transporters

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSHt:

Total glutathione

GSSG:

Oxidized glutathione

HMG-CoA reductase:

3-Hydroxyl-3-methyl-glutaryl-coenzyme A reductase

i.c.v.:

Intracerebroventricular

References

  • Aluise CD, Robinson RA, Beckett TL, Murphy MP, Cai J, Pierce WM, Markesbery WR, Butterfield DA (2010) Preclinical Alzheimer disease: brain oxidative stress, Abeta peptide and proteomics. Neurobiol Dis 39(2):221–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9(1):119–126

    Article  CAS  PubMed  Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  CAS  PubMed  Google Scholar 

  • Barone E, Cenini G, Di Domenico F, Martin S, Sultana R, Mancuso C, Murphy MP, Head E, Butterfield DA (2011) Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 63(3):172–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bicca MA, Figueiredo CP, Piermartiri TC, Meotti FC, Bouzon ZL, Tasca CI, Medeiros R, Calixto JB (2011) The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience 192:631–641

    Article  CAS  PubMed  Google Scholar 

  • Binder S, Baier PC, Mölle M, Inostroza M, Born J, Marshall L (2012) Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats. Neurobiol Learn Mem 97(2):213–219

    Article  PubMed  Google Scholar 

  • Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid-β-peptide associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA, Barone E, Mancuso C (2011) Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol Res 64(3):180–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    CAS  PubMed  Google Scholar 

  • Cassano T, Serviddio G, Gaetani S, Romano A, Dipasquale P, Cianci S, Bellanti F, Laconca L, Romano AD, Padalino I, Laferla FM, Nicoletti F, Cuomo V, Vendemiale G (2012) Glutamatergic alterations and mitochondrial impairment in a murine model of Alzheimer disease. Neurobiol Aging 33(6):1121.e1–1121.e12

    Article  CAS  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 308(8000):1403

    Article  Google Scholar 

  • Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M (1999) Cholinergic markers in elderly patients with early signs of Alzheimer’s disease. J Am Med Assoc 281:1401–1406

    Article  CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384(4):505–516

    Article  CAS  PubMed  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79(1–2):157–165

    Article  CAS  PubMed  Google Scholar 

  • El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382:716–719

    Article  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • García-Ayllón MS, Small DH, Avila J, Sáez-Valero J (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci 4(22):1–9

    Google Scholar 

  • Girardi E, Ramos AJ, Vanore G, Brusco A (2004) Astrocytic response in hippocampus and cerebral cortex in an experimental epilepsy model. Neurochem Res 29(2):371–377

    Article  CAS  PubMed  Google Scholar 

  • Grundke-Iqbal I (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haass C (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8(4):379–391

    Article  CAS  PubMed  Google Scholar 

  • Jhoo JH, Kim HC, Nabeshima T, Yamada K, Shin EJ, Jhoo WK, Kim W, Kang KS, Jo SA, Woo JI (2004) Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behav Brain Res 155(2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Kurinami H, Sato N, Shinohara M, Takeuchi D, Takeda S, Shimamura M, Ogihara T, Morishita R (2008) Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection mouse model. Int J Mol Med 21(5):531–537

    CAS  PubMed  Google Scholar 

  • Lee J-K, Won J-S, Singh AK, Singh I (2008) Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 440:260–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Longenberger J, Shah ZA (2011) Simvastatin and other HMG-CoA reductase inhibitors on brain cholesterol levels in Alzheimer’s disease. Curr Alzheimer Res 8(4):434–442

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough J, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B 827:65–75

    Article  CAS  Google Scholar 

  • Masters CL, Selkoe DJ (2012) Biochemistry of amyloid b-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med. 2(6):a006262

    Article  PubMed Central  PubMed  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 27(20):5394–5404

    Article  CAS  PubMed  Google Scholar 

  • Molz S, Decker H, Oliveira IJL, Souza DO, Tasca CI (2005) Neurotoxicity induced by glutamate in glucose-deprived rat hippocampal slices is prevent by GMP. Neurochem Res 30:83–89

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2000) Lehninger principles of biochemistry, 3rd edn. Worth Publishers, New York, pp 799–814

    Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1:189

    Article  CAS  PubMed  Google Scholar 

  • Piermartiri TCB, Vandresen-Filho S, Herculano BA, Martins WC, Dal’agnolo D, Stroeh E, Carqueja CL, Boeck CR, Tasca CI (2009) Atorvastatin prevents Hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 16(2):106–115

    Article  CAS  PubMed  Google Scholar 

  • Piermartiri TCB, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, De Bem AF, Prediger RDS, Tasca CI (2010) Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-β1-40 administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 226(2):274–284

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, Franco JL, Pandolfo P, Medeiros R, Duarte FS, Di Giunta G, Figueiredo CP, Farina M, Calixto JB, Takahashi RN, Dafre AL (2007) Differential susceptibility following beta-amyloid peptide-(1-40) administration in C57BL/6 and Swiss albino mice: Evidence for a dissociation between cognitive deficits and the glutathione system response. Behav Brain Res 177(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, Medeiros R, Pandolfo P, Duarte FS, Passos GF, Pesquero JB, Campos MM, Calixto JB, Takahashi RN (2008) Genetic deletion or antagonism of kinin B(1) and B(2) receptors improves cognitive deficits in a mouse model of Alzheimer’s disease. Neuroscience 151(3):631–643

    Article  CAS  PubMed  Google Scholar 

  • Rahman I, Bel A, Mulier B, Lawson MF, Harrison DJ, Macnee W, Smith CA (1996) Transcriptional regulation of gamma-glutamylcysteine synthetase-heavy subunit by oxidants in human alveolar epithelial cells. Biochem Biophys Res Commun 229(3):832–837

    Article  CAS  PubMed  Google Scholar 

  • Sacchetta P, Di Cola D, Federlci G (1986) Alkaline hydrolysis of N-ethylmaleimide allows a rapid assay of glutathione disulfide in biological samples. Anal Biochem 154:205–208

    Article  CAS  PubMed  Google Scholar 

  • Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer EL, Gattaz WF (2008) Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology 198(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni M, Butterfield DA (2011) Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 24(1):77–84

    CAS  PubMed  Google Scholar 

  • Tabner BJ, El-Agnaf OM, Turnbull S, German MJ, Paleologou KE, Hayashi Y, Cooper LJ, Fullwood NJ, Allsop D (2005) Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 280(43):35789–35792

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Sato N, Niisato K, Takeuchi D, Kurinami H, Shinohara M, Rakugi H, Kano M, Morishita R (2009) Validation of Aβ1–40 administration into mouse cerebroventricles as an animal model for Alzheimer disease. Brain Res 1280:137–147

    Article  CAS  PubMed  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62(18):5196–5203

    CAS  PubMed  Google Scholar 

  • Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity in asynchronous Alzheimer’s disease. Neurology 55:1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Tramontina AC, Wartchow KM, Rodrigues L, Biasibetti R, Quincozes-Santos A, Bobermin L, Tramontina F, Gonçalves CA (2011) The neuroprotective effect of two statins: simvastatin and pravastatin on a streptozotocin-induced model of Alzheimer’s disease in rats. J Neural Transm 118(11):1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Waters DD (2005) Safety of high-dose atorvastatin therapy. Am J Cardiol 96(5A):69–75

    Article  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    CAS  PubMed  Google Scholar 

  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research is supported by Grants from the Brazilian funding agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Conselho de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos – IBN-Net # 01.06.0842-00 (FINEP), and Instituto Nacional de Ciência e Tecnologia (INCT) for Excitotoxicity, and Neuroprotection. C.I.T., R.D.P. and M.F. are the recipients of CNPq productivity fellowship. W.C.M. is the recipient of CAPES Master scholarship and G.G.V. is the recipient of CAPES-PRODOC post-doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla I. Tasca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, W.C., dos Santos, V.V., dos Santos, A.A. et al. Atorvastatin Prevents Cognitive Deficits Induced by Intracerebroventricular Amyloid-β1–40 Administration in Mice: Involvement of Glutamatergic and Antioxidant Systems. Neurotox Res 28, 32–42 (2015). https://doi.org/10.1007/s12640-015-9527-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9527-y

Keywords

Navigation