Skip to main content
Log in

The Selective Inhibition of the D1 Dopamine Receptor Results in an Increase of Metabolized Dopamine in the Rat Striatum

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Our aim was to study the specific role of the postsynaptic D1 receptors on dopaminergic response and analyze the metabolized dopamine (DA) in the rat striatum. We used male Wistar rats to evaluate the effects of different doses of a D1 agonist (SKF-38393) and a D1 antagonist (SCH-23390), and their co-administration. The levels of DA and L-3, 4-dihydroxyphenylacetic acid (DOPAC) were measured using high performance liquid chromatography. The systemic injection of SKF-38393 alone at 1, 5 and 10 mg/kg did not alter the DA and DOPAC levels or the DOPAC/DA ratio. In contrast, injection of SCH-23390 alone at 0.25, 0.5 and 1 mg/kg significantly increased the DA and DOPAC levels, as well as the DOPAC/DA ratio, compared with the respective control groups. The co-administration of SCH-23390+SKF-38393 did not alter the DA or DOPAC levels, but it did significantly inhibit the SCH-23390-induced increase of the DA and DOPAC levels. The SCH-23390+SKF-38393 and the SCH-23390-only groups showed an increase in the DOPAC/DA ratio. The co-administration of SCH-23390+PARGYLINE significantly decreased the DOPAC levels and the DOPAC/DA ratio compared with the control and SCH-23390 groups. Taken together, our results showed that selective inhibition with SCH-23390 produced an increase in metabolized DA via striatal monoamine oxidase. These findings also contribute to the understanding of the role of postsynaptic D1 receptors in the long-loop negative feedback system in the rat striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groenewegen HJ (2003) The basal ganglia and motor control. Neural Plast 10:107–120

    Article  PubMed  Google Scholar 

  2. Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554

    Article  PubMed  CAS  Google Scholar 

  3. Bolam JP, Hanley JJ, Booth PAC, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542

    Article  PubMed  CAS  Google Scholar 

  4. Jackson DM, Westlind-Danielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64:291–370

    Article  PubMed  CAS  Google Scholar 

  5. Palermo-Neto J (1997) Dopaminergic systems. Dopamine receptors. Psychiatr Clin N Am 20:705–721

    Article  CAS  Google Scholar 

  6. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  PubMed  CAS  Google Scholar 

  7. Brazhnik E, Shah F, Tepper JM (2008) GABAergic afferents activate bothGABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J Neurosci 28:10386–10398

    Article  PubMed  CAS  Google Scholar 

  8. Imperato A, Di Chiara G (1988) Effects of locally applied D-1 and D-2 receptor agonists and antagonists studied with brain dialysis. Eur J Pharmacol 156:385–393

    Article  PubMed  CAS  Google Scholar 

  9. Rahman S, McBride JW (2001) D1-D2 dopamine receptor interaction within the nucleus accumbens mediates long-loop negative feedback to the ventral tegmental area (VTA). J Neurochem 77:1248–1255

    Article  PubMed  CAS  Google Scholar 

  10. Saklayen SS, Mabrouk OS, Pehek EA (2004) Negative feedback regulation of nigrostriatal dopamine release: mediation by striatal D1 receptors. J Pharmacol Exp Ther 311:342–348

    Article  PubMed  CAS  Google Scholar 

  11. Bueno-Nava A, González-Piña R, Ávila-Luna A, Alfaro-Rodríguez A (2011) Paradigm of negative feedback via long-loop in the striatal dopamine release modulation in the rat. Rev Neurol 52:371–377

    PubMed  CAS  Google Scholar 

  12. Tomiyama K, Koshikawa N, Funada K, Oka K, Kobayashi M (1995) In vivo microdialysis evidence for transient dopamine release by benzazepines in rat striatum. J Neurochem 65:2790–2795

    Article  PubMed  CAS  Google Scholar 

  13. Saigusa T, Aono Y, Sekino R, Uchida T, Takada K, Oi Y, Koshikawa N (2009) Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393. Eur J Pharmacol 624:10–15

    Article  PubMed  CAS  Google Scholar 

  14. Sekino R, Saigusa T, Aono Y, Uchida T, Takada K, Oi Y, Koshikawa N (2010) Dopamine D1-like receptors play only a minor role in the increase of striatal dopamine induced by striatally applied SKF38393. Eur J Pharmacol 648:80–86

    Article  PubMed  CAS  Google Scholar 

  15. Zackheim JA, Abercrombie ED (2001) Decreased striatal dopamine efflux after intrastriatal application of benzazepine-class D1 agonists is not mediated via dopamine receptors. Brain Res Bull 54:603–607

    Article  PubMed  CAS  Google Scholar 

  16. Abraini JH, Fechtali T, Rostain JC (1994) Lasting effects of dopamine receptor agonists upon striatal dopamine release in free-moving rats: an in vivo voltammetric study. Brain Res 642:199–205

    Article  PubMed  CAS  Google Scholar 

  17. Imperato A, Mulas A, Di Chiara G (1987) The D-1 antagonist SCH23390 stumulates while the D-1 agonist SKF38393 fails to affect dopamine release in the dorsal caudate of freely moving rats. Eur J Pharmacol 142:177–181

    Article  PubMed  CAS  Google Scholar 

  18. LGJr Harsing (2008) Dopamine and the dopaminergic systems of the brain. In: Lajtha A (ed) The handbook of neurochemistry and molecular neurobiology: neural membranes and transport, 3rd edn. Springer, Berlin, pp 149–170

    Google Scholar 

  19. Besson MJ, Cheramy A, Fetz P, Glowinski J (1969) Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Natl Acad Sci USA 62:741–748

    Article  PubMed  CAS  Google Scholar 

  20. Besson MJ, Cheramy A, Gauchy C, Glowinski J (1973) In vivo continuous estimation of 3H-DA synthesis an release in the cat caudate nucleus:effects of α-MPT and transaction of the nigro neostriatal pathway. Naunyn Schmiedebergs Arch Pharmacol 278:101–105

    Article  PubMed  CAS  Google Scholar 

  21. Glowinski J (1975) Properties and functions of intraneuronal monoamine compartments in central aminergic neurons. In: Iversen LL, Iversen SD, Snyder SH (eds) The handbook of psychopharmacology 3. Plenum Press, New York, pp 139–167

    Google Scholar 

  22. Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology, 7th edn. Oxford University Press, New York/Oxford, pp 293–351

    Google Scholar 

  23. Olfert ED, Cross BM, Mc William AA (1993) Guide for the care and use of experimental animals. Can Counc Anim Care 1:211

    Google Scholar 

  24. Festing MF (1994) Reduction of animal use: experimental design and quality of experiments. Lab Anim 28:212–221

    Article  PubMed  CAS  Google Scholar 

  25. Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A (2010) Iron-dextran injection into the substantia nigra in rats decreases striatal dopamine content ipsilateral to the injury site and impairs motor function. Metab Brain Dis 25:235–239

    Article  PubMed  CAS  Google Scholar 

  26. Zetterström T, Sharp T, Collin AK, Ungerstedt U (1988) In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPAC. Eur J Pharmacol 148:327–334

    Article  PubMed  Google Scholar 

  27. Pan JT, Lookingland KJ, Moore KE (1995) Differential effects of corticotropin-releasing hormone on central dopaminergic and noradrenergic neurons. J Biomed Sci 2:50–56

    Article  PubMed  CAS  Google Scholar 

  28. Rasheed N, Ahmad A, Pandey CP, Chaturvedi RK, Lohani M, Palit G (2010) Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats. Neurochem Res 35:22–32

    Article  PubMed  CAS  Google Scholar 

  29. Kalivas PW, Duffy P, Latimer LG (1987) Neurochemical and behavioral effects of corticotropin-releasing factor in the ventral tegmental area of the rat. J Pharmacol Exp Ther 242:757–763

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is from the first author as a member of the Doctorate Program in Biological Science at the Universidad Autónoma Metropolitana Iztapalapa-Xochimilco. Bueno-Nava was supported by the scholarship No. 47133 from CONACYT in Mexico. The technical assistance of J.L. Cortés-Altamirano and I. Villafaña-Rivera is greatly appreciated. The authors wish to thank Dra. Ivonne M. Heuze de Icasa for his support with the experimental animals.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bueno-Nava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno-Nava, A., Gonzalez-Pina, R., Alfaro-Rodriguez, A. et al. The Selective Inhibition of the D1 Dopamine Receptor Results in an Increase of Metabolized Dopamine in the Rat Striatum. Neurochem Res 37, 1783–1789 (2012). https://doi.org/10.1007/s11064-012-0790-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0790-5

Keywords

Navigation