Skip to main content
Log in

Differential Response of Central Dopaminergic System in Acute and Chronic Unpredictable Stress Models in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We aimed to evaluate the response of dopaminergic system in acute stress (AS) and chronic unpredictable stress (CUS) by measuring dopamine (DA) levels, its receptor densities in the frontal cortex, striatum, hippocampus, amygdala and orbito-frontal cortex regions of rat brain, and investigated the corresponding behavioral locomotor changes. Involvement of D1 receptor was also examined during AS and CUS using A 68930, a D1 selective agonist. Rats were exposed to AS (single immobilization for 150 min) and CUS (two different stressors for 7 days). AS significantly decreased the DA levels in the striatum and hippocampus, and A 68930 pretreatment significantly reverted these changes. However, in the frontal cortex significantly increased DA levels were remain unchanged following A 68930. CUS led to a decrease of DA levels in the frontal cortex, striatum and hippocampus, which were normalized by A 68930. Saturation radioligand binding assays revealed a significant decrease in the number of D1-like receptors in the frontal cortex during CUS, which were further decreased by A 68930 pretreatment. However, in the striatum and hippocampus, A 68930 pretreatment reduced the CUS induced increase in the number of D1-like receptors. No significant changes were observed in the amygdala and orbito-frontal cortex during AS and CUS, while D2-like receptors were unchanged in all the brain regions studied. Locomotor activity was significantly decreased in both the stress models, A 68930 pretreatment significantly increased stereotypic counts and horizontal activity. Thus, present investigation provide insights into the differential regional response of dopaminergic system during AS and CUS. Further, neurochemical and behavioral effects of D1 agonist pretreatment suggest specific modulatory role of D1 receptor under such stressful episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(Suppl 2):S3–S9

    Article  CAS  PubMed  Google Scholar 

  2. Goto Y, Grace AA (2007) The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int Rev Neurobiol 78(C):41–68

    Article  CAS  PubMed  Google Scholar 

  3. Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA (2008) Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J NeuroSci 27(8):2133–2146

    Article  PubMed  Google Scholar 

  4. Cuadra G, Zurita A, Gioino G, Molina V (2001) Influence of different antidepressant drugs on the effect of chronic variable stress on restraint-induced dopamine release in frontal cortex. Neuropsychopharmacology 25(3):384–394

    Article  CAS  PubMed  Google Scholar 

  5. Brunelin J, d’Amato T, van Os J, Cochet A, Suaud-Chagny MF, Saoud M (2008) Effects of acute metabolic stress on the dopaminergic and pituitary-adrenal axis activity in patients with schizophrenia, their unaffected siblings and controls. Schizophr Res 100(1–3):206–211

    Article  PubMed  Google Scholar 

  6. Kram ML, Kramer GL, Ronan PJ, Steciuk M, Petty F (2002) Dopamine receptors and learned helplessness in the rat: an autoradiographic study. Prog Neuropsychopharmacol Biol Psychiatry 26(4):639–645

    Article  CAS  PubMed  Google Scholar 

  7. Cabib S, Puglisi-Allegra S (1994) Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences. J Neurosci 14(5 Pt 2):3333–3340

    CAS  PubMed  Google Scholar 

  8. Will MJ, Watkins LR, Maier SF (1998) Uncontrollable stress potentiates morphine’s rewarding properties. Pharmacol Biochem Behav 60(3):655–664

    Article  CAS  PubMed  Google Scholar 

  9. Benturquia N, Courtin C, Noble F, Marie-Claire C (2008) Involvement of D1 dopamine receptor in MDMA-induced locomotor activity and striatal gene expression in mice. Brain Res 1211:1–5

    Article  CAS  PubMed  Google Scholar 

  10. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5(1):34–41

    Article  CAS  PubMed  Google Scholar 

  11. Floresco SB (2007) Dopaminergic regulation of limbic-striatal interplay. J Psychiatry Neurosci 32(6):400–411

    PubMed  Google Scholar 

  12. Amar S, Shaltiel G, Mann L et al (2008) Possible involvement of post-dopamine D2 receptor signalling components in the pathophysiology of schizophrenia. Int J Neuropsychopharmacol 11(2):197–205

    Article  CAS  PubMed  Google Scholar 

  13. Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem 15(7):483–491

    Article  PubMed  Google Scholar 

  14. Papp M, Klimek V, Willner P (1994) Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology (Berl) 115(4):441–446

    Article  CAS  Google Scholar 

  15. Pothos EN, Hernandez L, Hoebel BG (1995) Chronic food deprivation decreases extracellular dopamine in the nucleus accumbens: implications for a possible neurochemical link between weight loss and drug abuse. Obes Res 3(Suppl 4):525S–529S

    PubMed  Google Scholar 

  16. Daly SA, Waddington JL (1994) The effects of clozapine on behavioural responses to the selective ‘D1-like’ dopamine receptor agonist, A 68930, and to the selective ‘D2-like’ agonist, RU 24213. Br J Pharmacol 113(3):839–844

    CAS  PubMed  Google Scholar 

  17. Sheikh N, Ahmad A, Siripurapu KB, Kuchibhotla VK, Singh S, Palit G (2007) Effect of Bacopa monniera on stress induced changes in plasma corticosterone and brain monoamines in rats. J Ethnopharmacol 111(3):671–676

    Article  PubMed  Google Scholar 

  18. Creese I, Schneider R, Snyder SH (1977) 3H-Spiroperidol labels dopamine receptors in pituitary and brain. Eur J Pharmacol 46(4):377–381

    Article  CAS  PubMed  Google Scholar 

  19. Faedda G, Kula NS, Baldessarini RJ (1989) Pharmacology of binding of 3H-SCH-23390 to D-1 dopaminergic receptor sites in rat striatal tissue. Biochem Pharmacol 38(3):473–480

    Article  CAS  PubMed  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  21. Kim C, Speisky MB, Kharouba SN (1987) Rapid and sensitive method for measuring norepinephrine, dopamine, 5-hydroxytryptamine and their major metabolites in rat brain by high-performance liquid chromatography. Differential effect of probenecid, haloperidol and yohimbine on the concentrations of biogenic amines and metabolites in various regions of rat brain. J Chromatogr 386(1):25–35

    Article  CAS  PubMed  Google Scholar 

  22. Cabib S, Puglisi-Allegra S (1996) Stress, depression and the mesolimbic dopamine system. Psychopharmacology (Berl) 128(4):331–342

    Article  CAS  Google Scholar 

  23. Marti O, Martin M, Gavalda A et al (1997) Inhibition of corticosteroid-binding globulin caused by a severe stressor is apparently mediated by the adrenal but not by glucocorticoid receptors. Endocr 6(2):159–164

    Article  CAS  Google Scholar 

  24. Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 5(2):247–251

    Article  CAS  PubMed  Google Scholar 

  25. Rai D, Bhatia G, Sen T, Palit G (2003) Comparative study of perturbations of peripheral markers in different stressors in rats. Can J Physiol Pharmacol 81(12):1139–1146

    Article  CAS  PubMed  Google Scholar 

  26. Deutch AY, Clark WA, Roth RH (1990) Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res 521(1–2):311–315

    Article  CAS  PubMed  Google Scholar 

  27. Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577(2):194–199

    Article  CAS  PubMed  Google Scholar 

  28. Sorg BA, Kalivas PW (1993) Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex. Neuroscience 53(3):695–703

    Article  CAS  PubMed  Google Scholar 

  29. Mangiavacchi S, Masi F, Scheggi S, Leggio B, De Montis MG, Gambarana C (2001) Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J Neurochem 79(6):1113–1121

    Article  CAS  PubMed  Google Scholar 

  30. Doherty MD, Gratton A (1997) NMDA receptors in nucleus accumbens modulate stress-induced dopamine release in nucleus accumbens and ventral tegmental area. Synapse 26(3):225–234

    Article  CAS  PubMed  Google Scholar 

  31. King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77(1):141–153

    Article  CAS  PubMed  Google Scholar 

  32. Katoh A, Nabeshima T, Kuno A, Wada M, Ukai R, Kameyama T (1996) Changes in striatal dopamine release in stress-induced conditioned suppression of motility in rats. Behav Brain Res 77(1–2):219–221

    Article  CAS  PubMed  Google Scholar 

  33. Ventura R, Cabib S, Puglisi-Allegra S (2001) Opposite genotype-dependent mesocorticolimbic dopamine response to stress. Neuroscience 104(3):627–631

    Article  CAS  PubMed  Google Scholar 

  34. Rossetti ZL, Lai M, Hmaidan Y, Gessa GL (1993) Depletion of mesolimbic dopamine during behavioral despair: partial reversal by chronic imipramine. Eur J Pharmacol 242(3):313–315

    Article  CAS  PubMed  Google Scholar 

  35. Vakalopoulos C (2006) Neuropharmacology of cognition and memory: a unifying theory of neuromodulator imbalance in psychiatry and amnesia. Med Hypotheses 66(2):394–431

    Article  CAS  PubMed  Google Scholar 

  36. Das A, Rai D, Dikshit M, Palit G, Nath C (2005) Nature of stress: differential effects on brain acetylcholinesterase activity and memory in rats. Life Sci 77(18):2299–2311

    Article  CAS  PubMed  Google Scholar 

  37. Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z (2005) Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 161(1):45–59

    Article  CAS  PubMed  Google Scholar 

  38. Gamaro GD, Manoli LP, Torres IL, Silveira R, Dalmaz C (2003) Effects of chronic variate stress on feeding behavior and on monoamine levels in different rat brain structures. Neurochem Int 42(2):107–114

    Article  CAS  PubMed  Google Scholar 

  39. Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72(3):1088–1094

    Article  CAS  PubMed  Google Scholar 

  40. Gambarana C, Ghiglieri O, Graziella de Montis M (1995) Desensitization of the D1 dopamine receptors in rats reproduces a model of escape deficit reverted by imipramine, fluoxetine and clomipramine. Prog Neuropsychopharmacol Biol Psychiatry 19(5):741–755

    Article  CAS  PubMed  Google Scholar 

  41. Scheggi S, Masi F, Tagliamonte A, Gambarana C, Tolu P, De Montis MG (2000) Rats sensitized to morphine are resistant to the behavioral effects of an unavoidable stress. Brain Res 853(2):290–298

    Article  CAS  PubMed  Google Scholar 

  42. Cabib S, Giardino L, Calza L, Zanni M, Mele A, Puglisi-Allegra S (1998) Stress promotes major changes in dopamine receptor densities within the mesoaccumbens and nigrostriatal systems. Neuroscience 84(1):193–200

    Article  CAS  PubMed  Google Scholar 

  43. Giardino L, Zanni M, Pozza M, Bettelli C, Covelli V (1998) Dopamine receptors in the striatum of rats exposed to repeated restraint stress and alprazolam treatment. Eur J Pharmacol 344(2–3):143–147

    Article  CAS  PubMed  Google Scholar 

  44. Freitas RM, Oliveira Ade A, Vasconcelos SM, Sousa FC, Viana GS, Fonteles MM (2006) Expression of muscarinic and dopaminergic receptors and monoamine levels frontal cortex of epileptic rats. Pharmacol Biochem Behav 83(2):302–306

    Article  CAS  PubMed  Google Scholar 

  45. Boyson SJ, McGonigle P, Molinoff PB (1986) Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain. J Neurosci 6(11):3177–3188

    CAS  PubMed  Google Scholar 

  46. Jackson DM, Westlind-Danielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64(2):291–370

    Article  CAS  PubMed  Google Scholar 

  47. Sasa M, Nishi A, Kobayashi K et al (2003) Regulation of psychomotor functions by dopamine: integration of various approaches. Nippon Yakurigaku Zasshi 122(3):215–225

    CAS  PubMed  Google Scholar 

  48. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78

    Article  CAS  PubMed  Google Scholar 

  49. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2–3):69–97

    Article  CAS  PubMed  Google Scholar 

  50. Rezvani AH, Eddins D, Slade S et al (2008) Neonatal 6-hydroxydopamine lesions of the frontal cortex in rats: persisting effects on locomotor activity, learning and nicotine self-administration. Neuroscience 154(3):885–897

    Article  CAS  PubMed  Google Scholar 

  51. Diaz Heijtz R, Castellanos FX (2006) Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar–Kyoto rats. Behav Brain Funct 2:18

    Article  PubMed  CAS  Google Scholar 

  52. Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    CAS  PubMed  Google Scholar 

  53. Bernardi MM, De Souza H, Palermo Neto J (1981) Effects of single and long-term haloperidol administration on open field behavior of rats. Psychopharmacology (Berl) 73(2):171–175

    Article  CAS  Google Scholar 

  54. Ossowska G, Klenk-Majewska B, Zebrowska-Lupina I (1996) Acute effect of dopamine agonists and some antidepressants in stress-induced deficit of fighting behavior. Pol J Pharmacol 48(4):403–408

    CAS  PubMed  Google Scholar 

  55. Salmi P, Ahlenius S (2000) Sedative effects of the dopamine D1 receptor agonist A 68930 on rat open-field behavior. NeuroReport 11(6):1269–1272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are deeply grateful to our former colleague Dr. H. K. Singh for help in constructing manuscript and also to ICMR, New Delhi, India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Palit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasheed, N., Ahmad, A., Pandey, C.P. et al. Differential Response of Central Dopaminergic System in Acute and Chronic Unpredictable Stress Models in Rats. Neurochem Res 35, 22–32 (2010). https://doi.org/10.1007/s11064-009-0026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0026-5

Keywords

Navigation