Skip to main content
Log in

Increased expression of tumor-associated antigens in pediatric and adult ependymomas: implication for vaccine therapy

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Despite surgery and radiotherapy, as many as 50 % of children with ependymomas will suffer from tumor recurrences that will ultimately lead to death. Our group’s initial peptide-based glioma vaccine targeting EphA2, IL-13Rα2, and Survivin, which are overexpressed in pediatric gliomas, has shown promise in its initial phase of testing. We therefore investigated whether EphA2, IL-13Rα2, Survivin, and, additionally, Wilms’ Tumor 1 (WT1), are overexpressed in pediatric ependymomas to determine if a similar immunotherapy approach could be applicable. Immunohistochemistry was performed using antibodies specific for EphA2, IL-13Rα2, Survivin, and WT1 on paraffin-embedded specimens from 19 pediatric and 13 adult ependymomas. Normal brain and ependyma were used for background staining controls. Negative staining was defined as no staining or staining equaling the background intensity in normal brain tissues. In the 19 pediatric cases, 18 (95 %) demonstrated positive staining for EphA2, 16 (84 %) for IL-13Rα2, 18 (95 %) for Survivin, and only 7 (37 %) for WT1. Only 3 of 19 cases were positive for two or fewer tumor-associated antigens (TAAs); 16 of 19 cases were positive for three or more TAAs. In the 13 adult cases, all 13 demonstrated positive staining for EphA2, IL-13Rα2, and Survivin. Only 2 of 13 cases (15 %) demonstrated positive staining for WT1. All adult specimens were positive for three or more TAAs. Some ependymomas showed patchy variability in intensity. Pediatric and adult ependymomas frequently express EphA2, IL-13Rα2, and Survivin. This provides the basis for the utilization of an established multiple peptide vaccine for ependymoma in a clinical trial setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hamilton RL, Pollack IF (1997) The molecular biology of ependymomas. Brain Pathol 7:807–822

    Article  PubMed  CAS  Google Scholar 

  2. Agaoglu FY, Ayan I, Dizdar Y, Kebudi R, Gorgun O, Darendeliler E (2005) Ependymal tumors in childhood. Pediatr Blood Cancer 45:298–303. doi:10.1002/pbc.20212

    Article  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  Google Scholar 

  4. Poltinnikov IM, Merchant TE (2006) CSF cytology has limited value in the evaluation of patients with ependymoma who have MRI evidence of metastasis. Pediatr Blood Cancer 47:169–173. doi:10.1002/pbc.20587

    Article  PubMed  Google Scholar 

  5. Kawabata Y, Takahashi JA, Arakawa Y, Hashimoto N (2005) Long-term outcome in patients harboring intracranial ependymoma. J Neurosurg 103:31–37. doi:10.3171/jns.2005.103.1.0031

    Article  PubMed  Google Scholar 

  6. Donson AM, Birks DK, Barton VN, Wei Q, Kleinschmidt-Demasters BK, Handler MH, Waziri AE, Wang M, Foreman NK (2009) Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol 183:7428–7440. doi:10.4049/jimmunol.0902811

    Article  PubMed  CAS  Google Scholar 

  7. Pollack I, Jakacki R, Butterfield L, Okada H (2012) Peptide vaccine therapy for childhood gliomas. J Neurosurg Pediatr A341 (abstract)

  8. Sernee MF, Ploegh HL, Schust DJ (1998) Why certain antibodies cross-react with HLA-A and HLA-G: epitope mapping of two common MHC class I reagents. Mol Immunol 35:177–188

    Article  PubMed  CAS  Google Scholar 

  9. Stam NJ, Spits H, Ploegh HL (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J immunol 137:2299–2306

    PubMed  CAS  Google Scholar 

  10. Bourne TD, Elias WJ, Lopes MB, Mandell JW (2010) WT1 is not a reliable marker to distinguish reactive from neoplastic astrocyte populations in the central nervous system. Brain Pathol 20:1090–1095. doi:10.1111/j.1750-3639.2010.00415.x

    Article  PubMed  Google Scholar 

  11. Dominique Charron (1996) 12th International Histocompatibility Conference. Genetic diversity of HLA: functional and medical implications. Paris, France, June 9–12, 1996. Abstracts. Human immunology 47:1–184, Elsevier, New York

  12. Raffaghello L, Nozza P, Morandi F, Camoriano M, Wang X, Garre ML, Cama A, Basso G, Ferrone S, Gambini C, Pistoia V (2007) Expression and functional analysis of human leukocyte antigen class I antigen-processing machinery in medulloblastoma. Cancer Res 67:5471–5478. doi:10.1158/0008-5472.can-06-4735

    Article  PubMed  CAS  Google Scholar 

  13. Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19:5614–5619. doi:10.1038/sj.onc.1203856

    Article  PubMed  CAS  Google Scholar 

  14. Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ, Okada H (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7:717–722

    Article  PubMed  CAS  Google Scholar 

  15. Okada H, Low KL, Kohanbash G, McDonald HA, Hamilton RL, Pollack IF (2008) Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J Neurooncol 88:245–250. doi:10.1007/s11060-008-9566-9

    Article  PubMed  CAS  Google Scholar 

  16. Wykosky J, Gibo DM, Stanton C, Debinski W (2005) EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3:541–551. doi:10.1158/1541-7786.mcr-05-0056

    Article  PubMed  CAS  Google Scholar 

  17. Zhang JG, Kruse CA, Driggers L, Hoa N, Wisoff J, Allen JC, Zagzag D, Newcomb EW, Jadus MR (2008) Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neurooncol 88:65–76. doi:10.1007/s11060-008-9534-4

    Article  PubMed  Google Scholar 

  18. Liu F, Park PJ, Lai W, Maher E, Chakravarti A, Durso L, Jiang X, Yu Y, Brosius A, Thomas M, Chin L, Brennan C, DePinho RA, Kohane I, Carroll RS, Black PM, Johnson MD (2006) A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 66:10815–10823. doi:10.1158/0008-5472.can-06-1408

    Article  PubMed  CAS  Google Scholar 

  19. Kawakami M, Kawakami K, Takahashi S, Abe M, Puri RK (2004) Analysis of interleukin-13 receptor alpha2 expression in human pediatric brain tumors. Cancer 101:1036–1042. doi:10.1002/cncr.20470

    Article  PubMed  CAS  Google Scholar 

  20. Eguchi J, Hatano M, Nishimura F, Zhu X, Dusak JE, Sato H, Pollack IF, Storkus WJ, Okada H (2006) Identification of interleukin-13 receptor alpha2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res 66:5883–5891. doi:10.1158/0008-5472.can-06-0363

    Article  PubMed  CAS  Google Scholar 

  21. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, Zeh H, Holtzman MP, Reinhart TA, Whiteside TL, Butterfield LH, Hamilton RL, Potter DM, Pollack IF, Salazar AM, Lieberman FS (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336. doi:10.1200/jco.2010.30.7744

    Article  PubMed  CAS  Google Scholar 

  22. Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH (2000) Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol 10:1319–1328

    Article  PubMed  CAS  Google Scholar 

  23. Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46–54. doi:10.1038/nrc968

    Article  PubMed  CAS  Google Scholar 

  24. Preusser M, Wolfsberger S, Czech T, Slavc I, Budka H, Hainfellner JA (2005) Survivin expression in intracranial ependymomas and its correlation with tumor cell proliferation and patient outcome. Am J Clin Pathol 124:543–549. doi:10.1309/pp2g5gaafkv82dtg

    Article  PubMed  CAS  Google Scholar 

  25. Altura RA, Olshefski RS, Jiang Y, Boue DR (2003) Nuclear expression of Survivin in paediatric ependymomas and choroid plexus tumours correlates with morphologic tumour grade. Br J Cancer 89:1743–1749. doi:10.1038/sj.bjc.6601334

    Article  PubMed  CAS  Google Scholar 

  26. Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, thor Straten P (2001) Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 61:5964–5968

    PubMed  CAS  Google Scholar 

  27. Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC (2006) Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol Immunother 55:1294–1298. doi:10.1007/s00262-005-0102-x

    Article  PubMed  CAS  Google Scholar 

  28. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293. doi:10.1038/35067582

    Article  PubMed  CAS  Google Scholar 

  29. Kaufman HL, Disis ML (2004) Immune system versus tumor: shifting the balance in favor of DCs and effective immunity. J Clin Investig 113:664–667. doi:10.1172/jci21148

    PubMed  CAS  Google Scholar 

  30. Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, Kawano K, Kuwae Y, Yamauchi A, Okumura M, Kitamura Y, Oka Y, Kawase I, Sugiyama H, Aozasa K (2006) Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol 19:804–814. doi:10.1038/modpathol.3800588

    PubMed  CAS  Google Scholar 

  31. Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH, Soma T, Tatekawa T, Kawakami M, Asada M, Kishimoto T, Sugiyama H (1999) Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 90:194–204

    Article  PubMed  CAS  Google Scholar 

  32. Scharnhorst V, van der Eb AJ, Jochemsen AG (2001) WT1 proteins: functions in growth and differentiation. Gene 273:141–161

    Article  PubMed  CAS  Google Scholar 

  33. Idowu MO, Rosenblum MK, Wei XJ, Edgar MA, Soslow RA (2008) Ependymomas of the central nervous system and adult extra-axial ependymomas are morphologically and immunohistochemically distinct—a comparative study with assessment of ovarian carcinomas for expression of glial fibrillary acidic protein. Am J Surg Pathol 32:710–718. doi:10.1097/PAS.0b013e318159a2b4

    Article  PubMed  Google Scholar 

  34. Schittenhelm J, Beschorner R, Simon P, Tabatabai G, Herrmann C, Schlaszus H, Capper D, Weller M, Meyermann R, Mittelbronn M (2009) Diagnostic value of WT1 in neuroepithelial tumours. Neuropathol Appl Neurobiol 35:69–81. doi:10.1111/j.1365-2990.2008.00957.x

    Article  PubMed  CAS  Google Scholar 

  35. Hashiba T, Izumoto S, Kagawa N, Suzuki T, Hashimoto N, Maruno M, Yoshimine T (2007) Expression of WT1 protein and correlation with cellular proliferation in glial tumors. Neurol Med-Chir 47:165–170; discussion 170

    Article  Google Scholar 

  36. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A (1996) Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66:470–476. doi:10.1002/(sici)1097-0215(19960516)66:4<470:aid-ijc10>3.0.co;2-c

    Article  PubMed  CAS  Google Scholar 

  37. Gibson SJ, Imbertson LM, Wagner TL, Testerman TL, Reiter MJ, Miller RL, Tomai MA (1995) Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res 15:537–545

    Article  PubMed  CAS  Google Scholar 

  38. Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 61:1095–1099

    PubMed  CAS  Google Scholar 

  39. Yang I, Kremen TJ, Giovannone AJ, Paik E, Odesa SK, Prins RM, Liau LM (2004) Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-alpha and interferon-gamma treatment of human glioblastoma multiforme. J Neurosurg 100:310–319. doi:10.3171/jns.2004.100.2.0310

    Article  PubMed  CAS  Google Scholar 

  40. Prins RM, Craft N, Bruhn KW, Khan-Farooqi H, Koya RC, Stripecke R, Miller JF, Liau LM (2006) The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176:157–164

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maki Ikeura, BS for providing support with immunohistochemistry. This work was supported by a grant from the Doris Duke Charitable Foundation to University of Pittsburgh to J.Y. and a grant from National Institute of Health (R21 CA149872-02) to R.H. and I.P.

Ethical standards

This study complies with the current laws of the country in which they were performed.

Conflict of interest

The authors do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian F. Pollack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, J.T., Hamilton, R.L., Okada, H. et al. Increased expression of tumor-associated antigens in pediatric and adult ependymomas: implication for vaccine therapy. J Neurooncol 111, 103–111 (2013). https://doi.org/10.1007/s11060-012-0998-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0998-x

Keywords

Navigation