Skip to main content
Log in

Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas

  • Lab Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We investigated the protein expression of three glioma-associated antigens (GAAs) in pediatric brain stem glioma (BSG) and non-brain stem glioma (NBSG) cases with a view to their possible use in immunotherapy. Expression of EphA2, IL-13Rα2 and Survivin were studied by immunohistochemistry on paraffin-embedded tissues using a series of 15 BSG cases and 12 NBSG cases. Thirteen of 15 BSGs and all 12 NBSGs expressed at least one of GAAs; and 7 BSGs and 9 NBSGs expressed at least two of these GAAs at higher levels than non-neoplastic brain. There was no association between the tumor grade and levels of GAA expression. Although many cases demonstrated diffuse expression of GAAs throughout specimens, partial or patchy expression was noted in a small number of cases, suggesting a need for targeting multiple GAAs in immunotherapy. These results suggest that EphA2, IL-13Ralpha2 and Survivin are suitable targets for developing vaccine strategies for pediatric glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pollack IF (1994) Brain tumors in children. N Engl J Med 331:1500–1507

    Article  PubMed  CAS  Google Scholar 

  2. Jennings MT, Freeman ML, Murray MJ (1996) Strategies in the treatment of diffuse pontine gliomas: the therapeutic role of hyperfractionated radiotherapy and chemotherapy. J Neurooncol 28:207–222

    Article  PubMed  CAS  Google Scholar 

  3. Albright AL, Packer RJ, Zimmerman R, Rorke LB, Boyett J, Hammond GD (1993) Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children’s Cancer Group. Neurosurgery 33:1026–1029

    Article  PubMed  CAS  Google Scholar 

  4. Berger MS, Edwards MS, LaMasters D, Davis RL, Wilson CB (1983) Pediatric brain stem tumors: radiographic, pathological, and clinical correlations. Neurosurgery 12:298–302

    Article  PubMed  CAS  Google Scholar 

  5. Mantravadi RV, Phatak R, Bellur S, Liebner EJ, Haas R (1982) Brain stem gliomas: an autopsy study of 25 cases. Cancer 49:1294–1296

    Article  PubMed  CAS  Google Scholar 

  6. Epstein F, Wisoff JH (1988) Intrinsic brainstem tumors in childhood: surgical indications. J Neurooncol 6:309–317

    Article  PubMed  CAS  Google Scholar 

  7. Cartmill M, Punt J (1999) Diffuse brain stem glioma. A review of stereotactic biopsies. Childs Nerv Syst 15:235–237

    Article  PubMed  CAS  Google Scholar 

  8. Packer RJ, Boyett JM, Zimmerman RA, Rorke LB, Kaplan AM, Albright AL, Selch MT, Finlay JL, Hammond GD, Wara WM (1993) Hyperfractionated radiation therapy (72 Gy) for children with brain stem gliomas. A Childrens Cancer Group Phase I/II Trial. Cancer 72:1414–1421

    Article  PubMed  CAS  Google Scholar 

  9. Okada H, Lieberman FS, Edington HD, Witham TF, Wargo MJ, Cai Q, Elder EH, Whiteside TL, Schold SC Jr, Pollack IF (2003) Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. J Neurooncol 64:13–20

    PubMed  Google Scholar 

  10. Okada H, Attanucci J, Giezeman-Smits KM, Brissette-Storkus SC, Fellows KW, Pollack IF, Pogue-Geile K, Lotze MT, Bozik ME, Chambers WH (2001) An antigen identified by cytokine tumor vaccine-assisted SEREX (CAS) suppressed growth of a rat 9L glioma in vivo. Cancer Res 61:2625–2631

    PubMed  CAS  Google Scholar 

  11. Okada H, Villa LA, Attanucci J, Erff M, Fellows WK, Lotze MT, Pollack IF, Chambers WH (2001) Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther 8:1157–1166

    Article  PubMed  CAS  Google Scholar 

  12. Okada H, Pollack IF, Lieberman F, Lunsford LD, Kondziolka D, Schiff D, Attanucci J, Edington H, Chambers W, Kalinski P et al (2001) Gene therapy of malignant gliomas: a pilot study of vaccination with irradiated autologous glioma and dendritic cells admixed with IL-4 transduced fibroblasts to elicit an immune response. Hum Gene Ther 12:575–595

    Article  PubMed  CAS  Google Scholar 

  13. Giezeman-Smits KM, Okada H, Brissette-Storkus SC, Villa LA, Attanucci J, Lotze MT, Pollack IF, Bozik ME, Chambers WH (2000) Cytokine gene therapy of gliomas: induction of reactive CD4+ T cells by interleukin-4 transfected 9L gliosarcoma is essential for protective immunity. Cancer Res 60:2449–2457

    PubMed  CAS  Google Scholar 

  14. Okada H, Giezeman-Smits KM, Tahara H, Attanucci J, Fellows WK, Lotze MT, Chambers WH, Bozik ME (1999) Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSV-TK tumor vaccine. Gene Ther 6:219–226

    Article  PubMed  CAS  Google Scholar 

  15. Okada H, Tahara H, Shurin MR, Attanucci J, Giezeman-Smits KM, Fellows KW, Lotze MT, Chambers WH, Bozik ME (1998) Bone marrow derived dendritic cells pulsed with a tumor specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer 78:196–201

    Article  PubMed  CAS  Google Scholar 

  16. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  17. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  18. Eguchi J, Hatano M, Nishimura F, Zhu X, Dusak JE, Sato H, Pollack IF, Storkus WJ, Okada H (2006) Identification of interleukin-13 receptor alpha2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res 66:5883–5891

    Article  PubMed  CAS  Google Scholar 

  19. Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H (2002) Identification of a novel HLA-A*0201 restricted cytotoxic T lymphocyte epitope in a human glioma associated antigen, interleukin-13 receptor 2 chain. Clin Cancer Res 8:2851–2855

    PubMed  CAS  Google Scholar 

  20. Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ, Okada H (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7:717–722

    Article  PubMed  CAS  Google Scholar 

  21. Otto K, Andersen MH, Eggert A, Keikavoussi P, Pedersen LO, Rath JC, Bock M, Brocker EB, Straten PT, Kampgen E et al (2005) Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 23:884–889

    Article  PubMed  CAS  Google Scholar 

  22. Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872

    PubMed  CAS  Google Scholar 

  23. Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K, Takahashi H, Asoh S, Teramoto A, Ohta S (2005) Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol 72:231–238

    Article  PubMed  CAS  Google Scholar 

  24. Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth A (1996) Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66:470–476

    Article  PubMed  CAS  Google Scholar 

  25. Hatano M, Kuwashima N, Tatsumi T, Dusak JE, Nishimura F, Reilly KM, Storkus WJ, Okada H (2004) Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. J Transl Med 2:40

    Article  PubMed  Google Scholar 

  26. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D et al (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026

    Article  PubMed  CAS  Google Scholar 

  27. Oba SM, Wang YJ, Song JP, Li ZY, Kobayashi K, Tsugane S, Hamada GS, Tanaka M, Sugimura H (2001) Genomic structure and loss of heterozygosity of EPHB2 in colorectal cancer. Cancer Lett 164:97–104

    Article  PubMed  CAS  Google Scholar 

  28. Dodelet VC, Pasquale EB (2000) Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19:5614–5619

    Article  PubMed  CAS  Google Scholar 

  29. Miao H, Burnett E, Kinch M, Simon E, Wang B (2000) Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2:62–69

    Article  PubMed  CAS  Google Scholar 

  30. Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, Rhim JS, Sedor JR, Burnett E, Wang B (2001) Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3:527–530

    Article  PubMed  CAS  Google Scholar 

  31. Kinch MS, Moore MB, Harpole DH Jr (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 9:613–618

    PubMed  CAS  Google Scholar 

  32. Wykosky J, Gibo DM, Stanton C, Debinski W (2005) EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3:541–551

    Article  PubMed  CAS  Google Scholar 

  33. Liu F, Park PJ, Lai W, Maher E, Chakravarti A, Durso L, Jiang X, Yu Y, Brosius A, Thomas M et al (2006) A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. Cancer Res 66:10815–10823

    Article  PubMed  CAS  Google Scholar 

  34. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A (2006) IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 12:99–106

    Article  PubMed  CAS  Google Scholar 

  35. Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC (2004) Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 64:9160–9166

    Article  PubMed  CAS  Google Scholar 

  36. Debinski W, Gibo DM (2000) Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol Med 6:440–449

    PubMed  CAS  Google Scholar 

  37. Eguchi J, Hatano M, Nishimura F, Zhu X, Dusak JE, Sato H, Pollack IF, Storkus WJ, Okada H (2006) Identification of interleukin-13 receptor 2 peptide analogues capable of inducing improved anti-glioma CTL responses. Cancer Res 66:5883–5891

    Article  PubMed  CAS  Google Scholar 

  38. Kawakami M, Kawakami K, Takahashi S, Abe M, Puri RK (2004) Analysis of interleukin-13 receptor alpha2 expression in human pediatric brain tumors. Cancer 101:1036–1042

    Article  PubMed  CAS  Google Scholar 

  39. Blanc-Brude OP, Yu J, Simosa H, Conte MS, Sessa WC, Altieri DC (2002) Inhibitor of apoptosis protein survivin regulates vascular injury. Nat Med 8:987–994

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt SM, Schag K, Muller MR, Weck MM, Appel S, Kanz L, Grunebach F, Brossart P (2003) Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 102:571–576

    Article  PubMed  CAS  Google Scholar 

  41. Andersen MH, Pedersen LO, Capeller B, Brocker EB, Becker JC, Thor SP (2001) Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients. Cancer Res 61:5964–5968

    PubMed  CAS  Google Scholar 

  42. Wobser M, Keikavoussi P, Kunzmann V, Weininger M, Andersen MH, Becker JC (2005) Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin. Cancer Immunol Immunother 55:1294–1298

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by P01 NS40923 [H.O and IFP], P01 CA100327 [H.O.], the Doris Duke Charitable Foundation and James S. McDonnell Foundation [H.O.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideho Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, H., Low, K.L., Kohanbash, G. et al. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J Neurooncol 88, 245–250 (2008). https://doi.org/10.1007/s11060-008-9566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9566-9

Keywords

Navigation