Skip to main content

Advertisement

Log in

Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy

  • Clinical-patient Studies
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objectives We evaluated and compared tumor antigen precursor protein (TAPP) profiles in adult and pediatric brain tumors of 31 genes related to tumor associated antigens (TAA) for possible use in immunotherapy. Antigens were selected based on their potential to stimulate T cell responses against tumors of neuroectodermal origin. Methods Thirty-seven brain tumor specimens from 11 adult and 26 pediatric patients were analyzed by quantitative real-time PCR for the relative expression of 31 TAPP mRNAs. The age range of adults (4F:7M) was 27–77 years (median 51.5 ± 14.5 years) and for pediatrics (12F:14M) was 0.9–19 years (median 8.3 ± 5.5 years). Histological diagnoses consisted of 16 glioblastomas, 4 low grade astrocytomas, 10 juvenile pilocytic astrocytomas, and 7 ependymomas. Results The adult gliomas expressed 94% (29 of 31) of the TAPP mRNAs evaluated compared with pediatric brain tumors that expressed 55–74% of the TAPP mRNAs, dependent on tumor histological subtype. Four types of TAPP expression patterns were observed: (1) equal expression among adult and pediatric cases, (2) greater expression in adult than pediatric cases, (3) expression restricted to adult GBM and (4) a random distribution. The pediatric brain tumors lacked expression of some genes associated with engendering tumor survival, such as hTert and Survivin. Conclusions The potential TAA targets identified from the TAPP profiles of 31 genes associated with adult and pediatric brain tumors may help investigators select specific target antigens for developing dendritic cell- or peptide-based vaccines or T cell-based immunotherapeutic approaches against brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. CBTRUS (2005) Statistical report: primary brain tumors in the United States, 1998–2002. In: Central Brain Tumor Registry of the United States. CBTRUS, Chicago, IL, USA

  2. Watson GA, Kadota RP, Wisoff JH (2001) Multidisciplinary management of pediatric low-grade gliomas. Semin Radiat Oncol 11:152–162

    Article  PubMed  CAS  Google Scholar 

  3. Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC, Luciano M, Kangisser DB, Shu S (1998) Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 89:42–51

    PubMed  CAS  Google Scholar 

  4. Fakhrai H, Shawler DL, Gjerset R, Naviaux RK, Koziol J, Royston I, Sobol RE (1995) Cytokine gene therapy with interleukin-2-transduced fibroblasts: effects of IL-2 dose on anti-tumor immunity. Hum Gene Ther 6:591–601

    Article  PubMed  CAS  Google Scholar 

  5. Sloan AE, Dansey R, Zamorano L, Barger G, Hamm C, Diaz F, Baynes R, Wood G (2000) Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus 9(6):e9

    Article  PubMed  CAS  Google Scholar 

  6. Okada H, Lieberman FS, Edington HD, Witham TF, Wargo MJ, Cai Q, Elder EH, Whiteside TL, Schold SC, Pollack IF (2003) Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. J Neurooncol 64:13–20

    PubMed  Google Scholar 

  7. Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J, Shawler DL (2006) Phase I clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13:1052–1060

    Article  PubMed  CAS  Google Scholar 

  8. Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M, Gudeman S, Varia MA (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45:141–157

    Article  PubMed  CAS  Google Scholar 

  9. Kruse CA, Cepeda L, Owens B, Johnson SD, Stears J, Lillehei KO (1997) Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol Immunother 45:77–87

    Article  PubMed  CAS  Google Scholar 

  10. Kruse CA, Rubinstein D (2001) Cytotoxic T-lymphocytes reactive to patient major histocompatibility complex proteins for therapy of brain tumors. In: Liau LM, Becker DP, Cloughesy TF, Bigner DD (eds) Brain tumor immunotherapy. Humana Press, Totowa, NJ, pp 149–170

    Google Scholar 

  11. Plautz GE, Miller DW, Barnett GH, Stevens GHJ, Maffett S, Kim J, Cohen PA, Shu S (2000) T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res 6:2209–2218

    PubMed  CAS  Google Scholar 

  12. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  13. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovanone AJ, Lin J-W, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  14. Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344

    Article  PubMed  CAS  Google Scholar 

  15. Rutowski S, De Vleeschouwer S, Kaempgen E, Wolff JEA, Kuhl J, Demaerel P, Warmuth-Metz M, Flamen P, van Calenbergh F, Plets C, Sorensen N, Opitz A, van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662

    Google Scholar 

  16. Kim CH, Woo SJ, Park JS, Kim HS, Park MY, Park SD, Hong YK, Kim TG (2007) Enhanced antitumour immunity by combined use of temozolomide and TAT-survivin pulsed dendritic cells in a murine glioma. Immunology 122:615–622

    Article  PubMed  CAS  Google Scholar 

  17. De Vleeschouwer S, Rapp M, Sorg RV, Steiger H-J, Stummer W, van Gool S, Sabel M (2006) Dendritic cell vaccination in patients with malignant glioma: current status and future directions. Neurosurgery 59:988–1000

    PubMed  Google Scholar 

  18. Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, Ma W, Hoa N, Minev B, Delgado C, Wepsic HT, Okada H, Jadus MR (2007) Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 13:566–575

    Article  PubMed  CAS  Google Scholar 

  19. Kleihues P, Cavenee WK (eds) (2000) World health organization of tumours. Pathology and Genetics of Tumours of the Nervous System. IARC Press, pp 10–30

  20. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  21. Saikali W, Avril T, Collet B, Hamlat A, Bansard J-Y, Drenou B, Guegan Y, Quillien V (2007) Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy. J Neurooncol 81:139–148

    Article  PubMed  CAS  Google Scholar 

  22. Okano F, Storkus WJ, Chambers WH (2002) Identification of a novel HLA-A* 0201 restricted cytotoxic T lymphocyte epitope inhuman glioma-associated antigen, interleukin-13 receptor α2 chain. Clin Cancer Res 8:2851–2855

    PubMed  CAS  Google Scholar 

  23. Kelland L (2007) Targeting the limitless replicative potential of cancer: the telomerase/telomere pathway. Clin Cancer Res 13:4960–4963

    Article  PubMed  CAS  Google Scholar 

  24. Boldrini L, Pistolesi S, Gisfredi S, Ursino S, Ali G, Pieracci N, Basolo F, Parenti G, Fontanini G (2006) Telomerase activity and hTERT mRNA expression in glial tumors. Int J Oncol 28:1555–1560

    PubMed  CAS  Google Scholar 

  25. Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97:1077–1083

    Article  PubMed  Google Scholar 

  26. Liu X, Chen N, Wang X, He Y, Chen X, Huang Y, Yin W, Zhou Q (2006) Apoptosis and proliferation markers in diffusely infiltrating astrocytomas: profiling of 17 molecules. J Neuropathol Exp Neurol 65:905–913

    PubMed  CAS  Google Scholar 

  27. Fangusaro JR, Caldas H, Jiang Y, Altura RA (2006) Survivin: an inhibitor of apoptosis in pediatric cancer. Pediatr Blood Cancer 47:4–13

    Article  PubMed  Google Scholar 

  28. Aidida C, Berrebi D, Peucdhmaur M, Reyes-Mugica M, Altieri DC (1998) Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351:882–883

    Article  Google Scholar 

  29. Islam A, Kageyama H, Takada N, Kawamoto T, Takayasu H, Isogai E, Ohira M, Hashizume K, Kobayashi H, Kaneko Y, Nakagawara A (2000) High expression of survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19:617–623

    Article  PubMed  CAS  Google Scholar 

  30. Fangusaro JR, Jian Y, Holloway MP, Caldas H, Singh V, Boue DR, Hayes J, Altura RA (2005) Survivin, Survivin-2B and Survivin-deltaEx32 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome. Br J Cancer 92:359–365

    PubMed  CAS  Google Scholar 

  31. Pinol-Roma S, Swanson MS, Gall JG, Dreyfuss G (1989) A novel heterogeneous nuclear RNP protein with a unique distribution on nascent transcripts. J Cell Biol 109:2575–2587

    Article  PubMed  CAS  Google Scholar 

  32. Shih SC, Claffey KP (1999) Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274:1359–1365

    Article  PubMed  CAS  Google Scholar 

  33. Newcomb EW, Ali MA, Schnee T, Lukyanov Y, Fowkes M, Miller DC, Zagzag D (2005) Flavopiridol downregulates hypoxia-mediated HIF-1a expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy. Neuro Oncol 7:225–235

    Article  PubMed  CAS  Google Scholar 

  34. Gagner J-P, Law M, Fischer I, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol 15:342–363

    Article  PubMed  CAS  Google Scholar 

  35. Tanwar MK, Gilbert MR, Holland EC (2002) Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res 62:4364–4368

    PubMed  CAS  Google Scholar 

  36. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA (2006) Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev 15:194–202

    Article  PubMed  CAS  Google Scholar 

  37. Colin C, Baeza N, Bartoli C, Fina F, Eudes N, Nanni I, Martin P-M, Ouafik L, Figarella-Branger D (2006) Identification of genes differentially expressed in glioblastoma versus pilocytic astrocytoma using Suppression Subtractive Hybridization. Oncogene 25:2818–2826

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Veterans Affairs Merit Review grant [MRJ], the Long Island League to Abolish Cancer Fund [EWN] and National Institutes of Health grants NS057829 [EWN], NS046463, CA121258, NS054093, NS056300, and The R. Herbert & Alma S. Manweiler Memorial Research Fund [CAK] and the Making Headway Foundation [DZ].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Jadus.

Additional information

Elizabeth W. Newcomb and Martin R. Jadus contributed equally as senior authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.G., Kruse, C.A., Driggers, L. et al. Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neurooncol 88, 65–76 (2008). https://doi.org/10.1007/s11060-008-9534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9534-4

Keywords

Navigation