Skip to main content
Log in

PdNPs/carbon dots/silica hybrid nanostructures: the development of an electrochemical sensor for simultaneous determination of dopamine and serotonin in real samples

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work describes the synthesis, characterization, and electrochemical application of hybrid PdNPs/carbon dots/silica nanostructures, in which palladium nanoparticles (PdNP) were directly obtained through the carbon dots reduction by only one step. These nanostructures were characterized by UV–vis spectroscopy, FTIR with ATR module, HR-TEM, SEM, AFM, XPS, and electrochemical impedance. A non-enzymatic biosensor was prepared by dispersing the PdNPs/carbon dots/silica nanostructures on a printed carbon electrode, exhibiting excellent electrocatalytic activity for the simultaneous determination of dopamine and serotonin with a detection limit of 36 and 33 nmol L−1, respectively. The detection of dopamine and serotonin was also performed in real samples and did not suffer significant interference from ascorbic acid (AA) or uric acid (UA).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nalwa HS (2001) Nanostructured materials and nanotechnology: concise edition. Elsevier, pp 1–34. https://doi.org/10.1016/B978-0-12-513920-5.X5000-8

  2. Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem Rev 111:2251–2320. https://doi.org/10.1021/cr100355b

    Article  CAS  Google Scholar 

  3. Chang J, Feng L, Liu C, Xing W, Hu X (2014) An effective Pd–Ni2P/C anode catalyst for direct formic acid fuel cells. Angew Chem Int Ed 53:122–126. https://doi.org/10.1002/anie.201308620

    Article  CAS  Google Scholar 

  4. Gao D, Zhou H, Cai F, Wang J, Wang G, Bao X (2018) Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal 8:1510–1519. https://doi.org/10.1021/acscatal.7b03612

    Article  CAS  Google Scholar 

  5. Meng L, Jin J, Yang G, Lu T, Zhang H, Ca C (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280. https://doi.org/10.1021/ac901005p

    Article  CAS  Google Scholar 

  6. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res 8(2):355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  7. Canevari TC, Rossi MV, Alexiou ADP (2019) Development of an electrochemical sensor of endocrine disruptor bisphenol A by reduced graphene oxide for incorporation of spherical carbon nanoparticles. J Electroanal Chem 832:24–30. https://doi.org/10.1016/j.jelechem.2018.10.044

    Article  CAS  Google Scholar 

  8. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809. https://doi.org/10.1021/cm900709w

    Article  CAS  Google Scholar 

  9. Cesana R, Ferreira JHA, Gonçalves JM, Gomes D, Nakamura M, Peres RM, Toma HE, Canevari TC (2021) Fluorescent Cdots(N)-silica composites: direct synthesis and application as an electrochemical sensor of fenitrothion pesticide. Mater Sci Eng B 267:115084. https://doi.org/10.1016/j.mseb.2021.115084

    Article  CAS  Google Scholar 

  10. Cesana R, Gonçalves JM, Ignácio RM, Nakamura M, Zamarion VM, Toma HE, Canevari TC (2021) Synthesis and characterization of nanocomposite based on reduced graphene oxide-gold nanoparticles-carbon dots: electroanalytical determination of dihydroxybenzene isomers simultaneously. J Nanopart Res 22:336–347. https://doi.org/10.1007/s11051-020-05059-3

    Article  CAS  Google Scholar 

  11. Cincotto FH, Carvalho DAS, Canevari TC, Toma HE, Fatibello-Filho O, Moraes FC (2018) A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Adv 8(25):14040–14047. https://doi.org/10.1039/C8RA01857J

    Article  CAS  Google Scholar 

  12. Canevari TC, Cincotto FH, Nakamura M, Machado SAS, Toma HE (2016) Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Anal Met 8(39):7254–7259. https://doi.org/10.1039/C6AY02178F

    Article  CAS  Google Scholar 

  13. Walcarius A (2018) Silica-based electrochemical sensors and biosensors: recent trends. Curr Opin Electrochem 10:88–97. https://doi.org/10.1016/j.coelec.2018.03.017

    Article  CAS  Google Scholar 

  14. Yu Y, Miller R, Groth SW (2022) A literature review of dopamine in binge eating. J Eat Disord 10(11):1–26. https://doi.org/10.1186/s40337-022-00531-y

    Article  Google Scholar 

  15. Bellivier F, Leroux M, Henry C, Rayah F, Rouillon F, Laplanche J, Leboyer M (2002) Serotonin transporter gene polymorphism influences age at onset in patients with bipolar affective disorder. Neurosci Lett 334:17–20. https://doi.org/10.1016/s0304-3940(02)01029-7

    Article  CAS  Google Scholar 

  16. Regnier SD, Lile JA, Rush CR, Stoops WW (2022) Neurofarmacologia clínica do reforço de cocaína: uma revisão narrativa de estudos de autoadministração em laboratório humano. Jrnl Exper Analysis Behavior 117:420–441. https://doi.org/10.1002/jeab.744

    Article  Google Scholar 

  17. Ikegami D, Navratilova E, Yue X, Moutal A, Kopruszinski CM, Khanna R, Patwardhan A, Dodick DW, Porreca F (2022) A prolactin-dependent sexually dimorphic mechanism of migraine chronification. Cephalalgia 42(3):197–208. https://doi.org/10.1177/03331024211039813

    Article  Google Scholar 

  18. Pennacchio GE, Santonja FE, Neira FJ, Bregonzio C, Soaje M (2022) Prenatal amphetamine-induced dopaminergic alteration in a gender- and estrogen-dependent manner. Neurochem Res 47:1317–1328. https://doi.org/10.1007/s11064-022-03531-1

    Article  CAS  Google Scholar 

  19. El-Beqqali A, Kussak A, Abdel-Rehim M (2007) Determination of dopamine and serotonin in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry. J Sep Sci 30:421–424. https://doi.org/10.1002/jssc.200600369

    Article  CAS  Google Scholar 

  20. Li H, Sun B, Huan Y, Zhang J, Xu X, Shen Y, Chen Z, Yang J, Shen L, Hu Y, Gu H (2022) Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson’s disease models in vitro and vivo. Mol Med 28(29):1–19. https://doi.org/10.1186/s10020-022-00456-x

    Article  CAS  Google Scholar 

  21. Iuliis AD, Montinaro A, Fatati E, Plebani G, Colosimo CMD (2022) Diabetes mellitus and Parkinson’s disease: dangerous liaisons between insulin and dopamine. Neural Regen Res 17:523–533. https://doi.org/10.4103/1673-5374.320965

    Article  CAS  Google Scholar 

  22. Ossola P, Gerra MC, Gerra ML, Milano G, Zatti M, Zavane V, Volpi R, Marchesi C, Donninif C, Gerrag G, Gennaro CD (2021) Alcohol use disorders among adult children of alcoholics (ACOAs): Gene-environment resilience factors. Prog Neuropsychopharmacol Biol Psychiatry 108:110167. https://doi.org/10.1016/j.pnpbp.2020.110167

    Article  CAS  Google Scholar 

  23. Cass WA, Harned ME, Peters LE, Nath A, Maragos WF (2003) HIV-1 protein Tat potentiation of methamphetamine-induced decreases in evoked overflow of dopamine in the striatum of the rat. Brain Res 984:133–142. https://doi.org/10.1016/S0006-8993(03)03122-6

    Article  CAS  Google Scholar 

  24. Mirzaei H, Mogaddam MRA, Khandaghi J (2022) Simultaneous determination of four biogenic amines in whey samples using a new solid phase extraction method before their analysis by HPLC-MS/MS. Microchem J 177:107313. https://doi.org/10.1016/j.microc.2022.107313

    Article  CAS  Google Scholar 

  25. Yang Y, Wang H, Wu Y, Yu X (2022) Dual recognition strategy for selective fluorescent detection of dopamine and antioxidants based on graphite carbon nitride in human blood serum. Spectrochim Acta A Mol Biomol Spectrosc 265:120385. https://doi.org/10.1016/j.saa.2021.120385

    Article  CAS  Google Scholar 

  26. Wang Z, Yeung ES (2001) Selective detection of neurotransmitters by fluorescence and chemiluminescence imaging. Pure Appl Chem 73:1599–1611. https://doi.org/10.1351/pac200173101599

    Article  CAS  Google Scholar 

  27. Maity BK, Maiti S (2018) Label-free imaging of neurotransmitters in live brain tissue by multi-photon ultraviolet microscopy. Neuron Signal 2:1–14. https://doi.org/10.1042/ns20180132

    Article  CAS  Google Scholar 

  28. Liu R, Feng Z-Y, Li D, Jin B, Lan Y, Meng L-Y (2022) Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: a review. Trends Anal Chem 148:11654. https://doi.org/10.1016/j.trac.2022.116541

    Article  CAS  Google Scholar 

  29. Canevari TC, Nakamura M, Cincotto FH, De Melo FM, Toma HE (2016) High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim Acta 209:464–470. https://doi.org/10.1016/j.electacta.2016.05.108

    Article  CAS  Google Scholar 

  30. Fazl F, Bagher M (2022) High performance electrochemical method for simultaneous determination dopamine, serotonin, and tryptophan by ZrO2–CuO co-doped CeO2 modified carbon paste electrode. Talanta 239:122982. https://doi.org/10.1016/j.talanta.2021.122982

    Article  CAS  Google Scholar 

  31. Krishnan RG, Saraswathyamma B (2021) Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals. Anal Bioanal Chem 413:6803–6812. https://doi.org/10.1007/s00216-021-03282-y

    Article  CAS  Google Scholar 

  32. Xu Y, Wu M, Feng X-Z, Yin X-B, He X-W, Zhang Y-K (2013) Reduced carbon dots versus oxidized carbon dots: photo- and electrochemiluminescence investigations for selected applications. Chem Eur J 19:6282–6288. https://doi.org/10.1002/chem.201204372

    Article  CAS  Google Scholar 

  33. Lim CS, Hola K, Ambrosi A, Zboril R, Pumera M (2015) Graphene and carbon quantum dots electrochemistry. Electrochem Commun 52:75–79. https://doi.org/10.1016/j.elecom.2015.01.023

    Article  CAS  Google Scholar 

  34. Bhardwaj P, Barman PB, Hazra SK (2021) Hydrogen response of palladium nanoparticles washed with different solvents. Bull Mater Sci 44(45):1–7. https://doi.org/10.1007/s12034-020-02323-z

    Article  CAS  Google Scholar 

  35. Feng Y-G, Wang L-Y, Zhang L, Zhang J-Y (2006) Study of palladium nanoparticles prepared from water-in-oil microemulsion. Colloid Surf A: Physicochem Eng Asp 281:119–124. https://doi.org/10.1016/j.colsurfa.2006.02.024

    Article  CAS  Google Scholar 

  36. Bertoluzza A, Fagnano C, Morelli MA (1982) Raman and infrared spectra on silica gel evolving toward the glass. J Non-Cryst Solids 48:117–128. https://doi.org/10.1016/0022-3093(82)90250-2

    Article  CAS  Google Scholar 

  37. Wang H, Yu M, Lin CK, Lin J (2006) Core-shell structured SiO2@YVO4:Dy3+/Sm3+ phosphor particles: Sol-gel preparation and characterization. J Colloid Interf Sci 300:176–182. https://doi.org/10.1016/j.jcis.2006.03.052

    Article  CAS  Google Scholar 

  38. Canevari TC, Arguello J, Francisco MSP, Gushikem Y (2007) Cobalt phthalocyanine prepared in situ on a sol-gel derived SiO2/SnO2 mixed oxide: application in the electrocatalytic oxidation of oxalic acid. J Electroanal Chem 609:61–67. https://doi.org/10.1016/j.jelechem.2007.06.006

    Article  CAS  Google Scholar 

  39. Innocenzi P (2003) Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319. https://doi.org/10.1016/S0022-3093(02)01637-X

    Article  CAS  Google Scholar 

  40. Wang LJ, Zhang J, Zhao X, Xu LL, Lyu ZY, Lai M, Chen W (2015) Palladium nanoparticles functionalized graphene nanosheets for Li-O2 batteries: enhanced performance by tailoring the morphology of discharge product. RSC Adv 5:73451–73456. https://doi.org/10.1039/C5RA11312A

    Article  CAS  Google Scholar 

  41. Castillejos E, Arranz E, BaezaI B, Ramos R, Ruiz G (2020) Reductive degradation of 2,4-dichlorophenoxyacetic acid using Pd/carbon with bifunctional mechanism. Catal Today 357:361–367. https://doi.org/10.1016/j.cattod.2019.09.007

    Article  CAS  Google Scholar 

  42. Meškinis S, Vasiliauskas A, Andrulevičius M, Peckus D, Tamulevičius S, Viskontas K (2020) Diamond like carbon films containing si: structure and nonlinear optical properties. Mater 13(4):1003–1018. https://doi.org/10.3390/ma13041003

    Article  CAS  Google Scholar 

  43. Shirley DA (1972) High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys Rev B Condens Matter 5:4709–4714. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  44. Xiong Y, McLellan JM, Chen J, Yin Y, Li Z-Y, Xia Y (2005) Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J Am Chem Soc 127:17118–17127. https://doi.org/10.1021/ja056498s

    Article  CAS  Google Scholar 

  45. Zhou D, Li D, Jing P, Zhai Y, Shen D, Qu S, Rogach AL (2017) Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process. Chem Mater 29:1779–1787. https://doi.org/10.1021/acs.chemmater.6b05375

    Article  CAS  Google Scholar 

  46. Liang W, Rong Y, Fan L, Zhang C, Dong W, Li J, Niu J, Yang C, Shuang S, Dong C, Wong W-Y (2019) Simultaneous electrochemical sensing of serotonin, dopamine, and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Microchimica 186:751–760. https://doi.org/10.1007/s00604-019-3861-3

    Article  CAS  Google Scholar 

  47. Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199–204

    Article  Google Scholar 

  48. Deng H, Zhao J, Zhao S, Jiang S, Cui G (2022) A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin. Analyst 147:1598–1610. https://doi.org/10.1039/D1AN02318G

    Article  CAS  Google Scholar 

  49. Bonetto MC, Munoz FF, Diz VE, Sacco NJ, Corton E (2018) Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin. Electrochim Acta 283:338–348. https://doi.org/10.1016/j.electacta.2018.06.179

    Article  CAS  Google Scholar 

  50. Sun D, Li H, Li M, Li C, Dai H, Sun D, Yang B (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sens Actuators B Chem 259:433–442. https://doi.org/10.1016/j.snb.2017.12.037

    Article  CAS  Google Scholar 

  51. Gnahore GT, Velasco-Torrijos T, Colleran J (2017) The selective electrochemical detection of dopamine using sulfated β-cyclodextrin carbon paste electrode. Electrocatalysis 8:459–471. https://doi.org/10.1007/s12678-017-0402-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JHA acknowledges CAPES, and T.C.C acknowledges Mackpesquisa, FINEP, CAPES, and CNPq for a Research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago C. Canevari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.H.A., Peres, R.M., Nakamura, M. et al. PdNPs/carbon dots/silica hybrid nanostructures: the development of an electrochemical sensor for simultaneous determination of dopamine and serotonin in real samples. J Nanopart Res 25, 9 (2023). https://doi.org/10.1007/s11051-022-05659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05659-1

Keywords

Navigation